summaryrefslogtreecommitdiffstats
path: root/hw/riscv/microchip_pfsoc.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/riscv/microchip_pfsoc.c')
-rw-r--r--hw/riscv/microchip_pfsoc.c679
1 files changed, 679 insertions, 0 deletions
diff --git a/hw/riscv/microchip_pfsoc.c b/hw/riscv/microchip_pfsoc.c
new file mode 100644
index 00000000..a821263d
--- /dev/null
+++ b/hw/riscv/microchip_pfsoc.c
@@ -0,0 +1,679 @@
+/*
+ * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
+ *
+ * Copyright (c) 2020 Wind River Systems, Inc.
+ *
+ * Author:
+ * Bin Meng <bin.meng@windriver.com>
+ *
+ * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
+ *
+ * 0) CLINT (Core Level Interruptor)
+ * 1) PLIC (Platform Level Interrupt Controller)
+ * 2) eNVM (Embedded Non-Volatile Memory)
+ * 3) MMUARTs (Multi-Mode UART)
+ * 4) Cadence eMMC/SDHC controller and an SD card connected to it
+ * 5) SiFive Platform DMA (Direct Memory Access Controller)
+ * 6) GEM (Gigabit Ethernet MAC Controller)
+ * 7) DMC (DDR Memory Controller)
+ * 8) IOSCB modules
+ *
+ * This board currently generates devicetree dynamically that indicates at least
+ * two harts and up to five harts.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2 or later, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/error-report.h"
+#include "qemu/units.h"
+#include "qemu/cutils.h"
+#include "qapi/error.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "hw/sysbus.h"
+#include "chardev/char.h"
+#include "hw/cpu/cluster.h"
+#include "target/riscv/cpu.h"
+#include "hw/misc/unimp.h"
+#include "hw/riscv/boot.h"
+#include "hw/riscv/riscv_hart.h"
+#include "hw/riscv/microchip_pfsoc.h"
+#include "hw/intc/riscv_aclint.h"
+#include "hw/intc/sifive_plic.h"
+#include "sysemu/device_tree.h"
+#include "sysemu/sysemu.h"
+
+/*
+ * The BIOS image used by this machine is called Hart Software Services (HSS).
+ * See https://github.com/polarfire-soc/hart-software-services
+ */
+#define BIOS_FILENAME "hss.bin"
+#define RESET_VECTOR 0x20220000
+
+/* CLINT timebase frequency */
+#define CLINT_TIMEBASE_FREQ 1000000
+
+/* GEM version */
+#define GEM_REVISION 0x0107010c
+
+/*
+ * The complete description of the whole PolarFire SoC memory map is scattered
+ * in different documents. There are several places to look at for memory maps:
+ *
+ * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
+ * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
+ * https://www.microsemi.com/document-portal/doc_download/
+ * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
+ * describes the whole picture of the PolarFire SoC memory map.
+ *
+ * 2 A zip file for PolarFire soC memory map, which can be downloaded from
+ * https://www.microsemi.com/document-portal/doc_download/
+ * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
+ * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
+ * describes the complete integrated peripherals memory map
+ * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
+ * describes the complete IOSCB modules memory maps
+ */
+static const MemMapEntry microchip_pfsoc_memmap[] = {
+ [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
+ [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
+ [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
+ [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
+ [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
+ [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
+ [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
+ [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
+ [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
+ [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
+ [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
+ [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
+ [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
+ [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
+ [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
+ [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
+ [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
+ [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
+ [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
+ [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
+ [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
+ [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
+ [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
+ [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
+ [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
+ [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
+ [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
+ [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
+ [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
+ [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
+ [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
+ [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
+ [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
+ [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
+ [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
+ [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
+ [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
+ [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
+ [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
+ [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
+ [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
+ [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
+ [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
+ [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
+ [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
+ [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
+ [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
+ [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
+ [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
+ [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
+ [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
+ [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
+};
+
+static void microchip_pfsoc_soc_instance_init(Object *obj)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+ MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
+
+ object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
+ qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
+
+ object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
+ TYPE_RISCV_HART_ARRAY);
+ qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
+ qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
+ qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
+ TYPE_RISCV_CPU_SIFIVE_E51);
+ qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
+
+ object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
+ qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
+
+ object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
+ TYPE_RISCV_HART_ARRAY);
+ qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
+ qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
+ qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
+ TYPE_RISCV_CPU_SIFIVE_U54);
+ qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
+
+ object_initialize_child(obj, "dma-controller", &s->dma,
+ TYPE_SIFIVE_PDMA);
+
+ object_initialize_child(obj, "sysreg", &s->sysreg,
+ TYPE_MCHP_PFSOC_SYSREG);
+
+ object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
+ TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
+ object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
+ TYPE_MCHP_PFSOC_DDR_CFG);
+
+ object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
+ object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
+
+ object_initialize_child(obj, "sd-controller", &s->sdhci,
+ TYPE_CADENCE_SDHCI);
+
+ object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
+}
+
+static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+ MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
+ const MemMapEntry *memmap = microchip_pfsoc_memmap;
+ MemoryRegion *system_memory = get_system_memory();
+ MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
+ MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
+ MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
+ MemoryRegion *envm_data = g_new(MemoryRegion, 1);
+ MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
+ char *plic_hart_config;
+ NICInfo *nd;
+ int i;
+
+ sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
+ sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
+ /*
+ * The cluster must be realized after the RISC-V hart array container,
+ * as the container's CPU object is only created on realize, and the
+ * CPU must exist and have been parented into the cluster before the
+ * cluster is realized.
+ */
+ qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
+ qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
+
+ /* Reserved Memory at address 0 */
+ memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
+ memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_RSVD0].base,
+ rsvd0_mem);
+
+ /* E51 DTIM */
+ memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
+ memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_E51_DTIM].base,
+ e51_dtim_mem);
+
+ /* Bus Error Units */
+ create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
+ create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
+ create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
+ create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
+ create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
+ memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
+
+ /* CLINT */
+ riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
+ 0, ms->smp.cpus, false);
+ riscv_aclint_mtimer_create(
+ memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
+ RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
+ RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
+ CLINT_TIMEBASE_FREQ, false);
+
+ /* L2 cache controller */
+ create_unimplemented_device("microchip.pfsoc.l2cc",
+ memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
+
+ /*
+ * Add L2-LIM at reset size.
+ * This should be reduced in size as the L2 Cache Controller WayEnable
+ * register is incremented. Unfortunately I don't see a nice (or any) way
+ * to handle reducing or blocking out the L2 LIM while still allowing it
+ * be re returned to all enabled after a reset. For the time being, just
+ * leave it enabled all the time. This won't break anything, but will be
+ * too generous to misbehaving guests.
+ */
+ memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
+ memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_L2LIM].base,
+ l2lim_mem);
+
+ /* create PLIC hart topology configuration string */
+ plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
+
+ /* PLIC */
+ s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
+ plic_hart_config, ms->smp.cpus, 0,
+ MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
+ MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
+ MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
+ MICROCHIP_PFSOC_PLIC_PENDING_BASE,
+ MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
+ MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
+ MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
+ MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
+ memmap[MICROCHIP_PFSOC_PLIC].size);
+ g_free(plic_hart_config);
+
+ /* DMA */
+ sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
+ memmap[MICROCHIP_PFSOC_DMA].base);
+ for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
+ qdev_get_gpio_in(DEVICE(s->plic),
+ MICROCHIP_PFSOC_DMA_IRQ0 + i));
+ }
+
+ /* SYSREG */
+ sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
+ memmap[MICROCHIP_PFSOC_SYSREG].base);
+
+ /* AXISW */
+ create_unimplemented_device("microchip.pfsoc.axisw",
+ memmap[MICROCHIP_PFSOC_AXISW].base,
+ memmap[MICROCHIP_PFSOC_AXISW].size);
+
+ /* MPUCFG */
+ create_unimplemented_device("microchip.pfsoc.mpucfg",
+ memmap[MICROCHIP_PFSOC_MPUCFG].base,
+ memmap[MICROCHIP_PFSOC_MPUCFG].size);
+
+ /* FMETER */
+ create_unimplemented_device("microchip.pfsoc.fmeter",
+ memmap[MICROCHIP_PFSOC_FMETER].base,
+ memmap[MICROCHIP_PFSOC_FMETER].size);
+
+ /* DDR SGMII PHY */
+ sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
+ memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
+
+ /* DDR CFG */
+ sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
+ memmap[MICROCHIP_PFSOC_DDR_CFG].base);
+
+ /* SDHCI */
+ sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
+ memmap[MICROCHIP_PFSOC_EMMC_SD].base);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
+
+ /* MMUARTs */
+ s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
+ memmap[MICROCHIP_PFSOC_MMUART0].base,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
+ serial_hd(0));
+ s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
+ memmap[MICROCHIP_PFSOC_MMUART1].base,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
+ serial_hd(1));
+ s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
+ memmap[MICROCHIP_PFSOC_MMUART2].base,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
+ serial_hd(2));
+ s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
+ memmap[MICROCHIP_PFSOC_MMUART3].base,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
+ serial_hd(3));
+ s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
+ memmap[MICROCHIP_PFSOC_MMUART4].base,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
+ serial_hd(4));
+
+ /* Watchdogs */
+ create_unimplemented_device("microchip.pfsoc.watchdog0",
+ memmap[MICROCHIP_PFSOC_WDOG0].base,
+ memmap[MICROCHIP_PFSOC_WDOG0].size);
+ create_unimplemented_device("microchip.pfsoc.watchdog1",
+ memmap[MICROCHIP_PFSOC_WDOG1].base,
+ memmap[MICROCHIP_PFSOC_WDOG1].size);
+ create_unimplemented_device("microchip.pfsoc.watchdog2",
+ memmap[MICROCHIP_PFSOC_WDOG2].base,
+ memmap[MICROCHIP_PFSOC_WDOG2].size);
+ create_unimplemented_device("microchip.pfsoc.watchdog3",
+ memmap[MICROCHIP_PFSOC_WDOG3].base,
+ memmap[MICROCHIP_PFSOC_WDOG3].size);
+ create_unimplemented_device("microchip.pfsoc.watchdog4",
+ memmap[MICROCHIP_PFSOC_WDOG4].base,
+ memmap[MICROCHIP_PFSOC_WDOG4].size);
+
+ /* SPI */
+ create_unimplemented_device("microchip.pfsoc.spi0",
+ memmap[MICROCHIP_PFSOC_SPI0].base,
+ memmap[MICROCHIP_PFSOC_SPI0].size);
+ create_unimplemented_device("microchip.pfsoc.spi1",
+ memmap[MICROCHIP_PFSOC_SPI1].base,
+ memmap[MICROCHIP_PFSOC_SPI1].size);
+
+ /* I2C */
+ create_unimplemented_device("microchip.pfsoc.i2c0",
+ memmap[MICROCHIP_PFSOC_I2C0].base,
+ memmap[MICROCHIP_PFSOC_I2C0].size);
+ create_unimplemented_device("microchip.pfsoc.i2c1",
+ memmap[MICROCHIP_PFSOC_I2C1].base,
+ memmap[MICROCHIP_PFSOC_I2C1].size);
+
+ /* CAN */
+ create_unimplemented_device("microchip.pfsoc.can0",
+ memmap[MICROCHIP_PFSOC_CAN0].base,
+ memmap[MICROCHIP_PFSOC_CAN0].size);
+ create_unimplemented_device("microchip.pfsoc.can1",
+ memmap[MICROCHIP_PFSOC_CAN1].base,
+ memmap[MICROCHIP_PFSOC_CAN1].size);
+
+ /* USB */
+ create_unimplemented_device("microchip.pfsoc.usb",
+ memmap[MICROCHIP_PFSOC_USB].base,
+ memmap[MICROCHIP_PFSOC_USB].size);
+
+ /* GEMs */
+
+ nd = &nd_table[0];
+ if (nd->used) {
+ qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
+ qdev_set_nic_properties(DEVICE(&s->gem0), nd);
+ }
+ nd = &nd_table[1];
+ if (nd->used) {
+ qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
+ qdev_set_nic_properties(DEVICE(&s->gem1), nd);
+ }
+
+ object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
+ object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
+ sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
+ memmap[MICROCHIP_PFSOC_GEM0].base);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
+
+ object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
+ object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
+ sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
+ memmap[MICROCHIP_PFSOC_GEM1].base);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
+ qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
+
+ /* GPIOs */
+ create_unimplemented_device("microchip.pfsoc.gpio0",
+ memmap[MICROCHIP_PFSOC_GPIO0].base,
+ memmap[MICROCHIP_PFSOC_GPIO0].size);
+ create_unimplemented_device("microchip.pfsoc.gpio1",
+ memmap[MICROCHIP_PFSOC_GPIO1].base,
+ memmap[MICROCHIP_PFSOC_GPIO1].size);
+ create_unimplemented_device("microchip.pfsoc.gpio2",
+ memmap[MICROCHIP_PFSOC_GPIO2].base,
+ memmap[MICROCHIP_PFSOC_GPIO2].size);
+
+ /* eNVM */
+ memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
+ memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
+ &error_fatal);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
+ envm_data);
+
+ /* IOSCB */
+ sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
+ memmap[MICROCHIP_PFSOC_IOSCB].base);
+
+ /* FPGA Fabric */
+ create_unimplemented_device("microchip.pfsoc.fabricfic3",
+ memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
+ memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
+
+ /* QSPI Flash */
+ memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
+ "microchip.pfsoc.qspi_xip",
+ memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
+ &error_fatal);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
+ qspi_xip_mem);
+}
+
+static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(oc);
+
+ dc->realize = microchip_pfsoc_soc_realize;
+ /* Reason: Uses serial_hds in realize function, thus can't be used twice */
+ dc->user_creatable = false;
+}
+
+static const TypeInfo microchip_pfsoc_soc_type_info = {
+ .name = TYPE_MICROCHIP_PFSOC,
+ .parent = TYPE_DEVICE,
+ .instance_size = sizeof(MicrochipPFSoCState),
+ .instance_init = microchip_pfsoc_soc_instance_init,
+ .class_init = microchip_pfsoc_soc_class_init,
+};
+
+static void microchip_pfsoc_soc_register_types(void)
+{
+ type_register_static(&microchip_pfsoc_soc_type_info);
+}
+
+type_init(microchip_pfsoc_soc_register_types)
+
+static void microchip_icicle_kit_machine_init(MachineState *machine)
+{
+ MachineClass *mc = MACHINE_GET_CLASS(machine);
+ const MemMapEntry *memmap = microchip_pfsoc_memmap;
+ MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
+ MemoryRegion *system_memory = get_system_memory();
+ MemoryRegion *mem_low = g_new(MemoryRegion, 1);
+ MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
+ MemoryRegion *mem_high = g_new(MemoryRegion, 1);
+ MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
+ uint64_t mem_low_size, mem_high_size;
+ hwaddr firmware_load_addr;
+ const char *firmware_name;
+ bool kernel_as_payload = false;
+ target_ulong firmware_end_addr, kernel_start_addr;
+ uint64_t kernel_entry;
+ uint32_t fdt_load_addr;
+ DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
+
+ /* Sanity check on RAM size */
+ if (machine->ram_size < mc->default_ram_size) {
+ char *sz = size_to_str(mc->default_ram_size);
+ error_report("Invalid RAM size, should be bigger than %s", sz);
+ g_free(sz);
+ exit(EXIT_FAILURE);
+ }
+
+ /* Initialize SoC */
+ object_initialize_child(OBJECT(machine), "soc", &s->soc,
+ TYPE_MICROCHIP_PFSOC);
+ qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
+
+ /* Split RAM into low and high regions using aliases to machine->ram */
+ mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
+ mem_high_size = machine->ram_size - mem_low_size;
+ memory_region_init_alias(mem_low, NULL,
+ "microchip.icicle.kit.ram_low", machine->ram,
+ 0, mem_low_size);
+ memory_region_init_alias(mem_high, NULL,
+ "microchip.icicle.kit.ram_high", machine->ram,
+ mem_low_size, mem_high_size);
+
+ /* Register RAM */
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_DRAM_LO].base,
+ mem_low);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_DRAM_HI].base,
+ mem_high);
+
+ /* Create aliases for the low and high RAM regions */
+ memory_region_init_alias(mem_low_alias, NULL,
+ "microchip.icicle.kit.ram_low.alias",
+ mem_low, 0, mem_low_size);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
+ mem_low_alias);
+ memory_region_init_alias(mem_high_alias, NULL,
+ "microchip.icicle.kit.ram_high.alias",
+ mem_high, 0, mem_high_size);
+ memory_region_add_subregion(system_memory,
+ memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
+ mem_high_alias);
+
+ /* Attach an SD card */
+ if (dinfo) {
+ CadenceSDHCIState *sdhci = &(s->soc.sdhci);
+ DeviceState *card = qdev_new(TYPE_SD_CARD);
+
+ qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
+ &error_fatal);
+ qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
+ }
+
+ /*
+ * We follow the following table to select which payload we execute.
+ *
+ * -bios | -kernel | payload
+ * -------+------------+--------
+ * N | N | HSS
+ * Y | don't care | HSS
+ * N | Y | kernel
+ *
+ * This ensures backwards compatibility with how we used to expose -bios
+ * to users but allows them to run through direct kernel booting as well.
+ *
+ * When -kernel is used for direct boot, -dtb must be present to provide
+ * a valid device tree for the board, as we don't generate device tree.
+ */
+
+ if (machine->kernel_filename && machine->dtb) {
+ int fdt_size;
+ machine->fdt = load_device_tree(machine->dtb, &fdt_size);
+ if (!machine->fdt) {
+ error_report("load_device_tree() failed");
+ exit(1);
+ }
+
+ firmware_name = RISCV64_BIOS_BIN;
+ firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
+ kernel_as_payload = true;
+ }
+
+ if (!kernel_as_payload) {
+ firmware_name = BIOS_FILENAME;
+ firmware_load_addr = RESET_VECTOR;
+ }
+
+ /* Load the firmware */
+ firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
+ firmware_load_addr, NULL);
+
+ if (kernel_as_payload) {
+ kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
+ firmware_end_addr);
+
+ kernel_entry = riscv_load_kernel(machine->kernel_filename,
+ kernel_start_addr, NULL);
+
+ if (machine->initrd_filename) {
+ hwaddr start;
+ hwaddr end = riscv_load_initrd(machine->initrd_filename,
+ machine->ram_size, kernel_entry,
+ &start);
+ qemu_fdt_setprop_cell(machine->fdt, "/chosen",
+ "linux,initrd-start", start);
+ qemu_fdt_setprop_cell(machine->fdt, "/chosen",
+ "linux,initrd-end", end);
+ }
+
+ if (machine->kernel_cmdline && *machine->kernel_cmdline) {
+ qemu_fdt_setprop_string(machine->fdt, "/chosen",
+ "bootargs", machine->kernel_cmdline);
+ }
+
+ /* Compute the fdt load address in dram */
+ fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
+ machine->ram_size, machine->fdt);
+ /* Load the reset vector */
+ riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
+ memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
+ memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
+ kernel_entry, fdt_load_addr);
+ }
+}
+
+static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
+{
+ MachineClass *mc = MACHINE_CLASS(oc);
+
+ mc->desc = "Microchip PolarFire SoC Icicle Kit";
+ mc->init = microchip_icicle_kit_machine_init;
+ mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
+ MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
+ mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
+ mc->default_cpus = mc->min_cpus;
+ mc->default_ram_id = "microchip.icicle.kit.ram";
+
+ /*
+ * Map 513 MiB high memory, the mimimum required high memory size, because
+ * HSS will do memory test against the high memory address range regardless
+ * of physical memory installed.
+ *
+ * See memory_tests() in mss_ddr.c in the HSS source code.
+ */
+ mc->default_ram_size = 1537 * MiB;
+}
+
+static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
+ .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
+ .parent = TYPE_MACHINE,
+ .class_init = microchip_icicle_kit_machine_class_init,
+ .instance_size = sizeof(MicrochipIcicleKitState),
+};
+
+static void microchip_icicle_kit_machine_init_register_types(void)
+{
+ type_register_static(&microchip_icicle_kit_machine_typeinfo);
+}
+
+type_init(microchip_icicle_kit_machine_init_register_types)