summaryrefslogtreecommitdiffstats
path: root/hw/acpi/nvdimm.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/acpi/nvdimm.c')
-rw-r--r--hw/acpi/nvdimm.c1469
1 files changed, 1469 insertions, 0 deletions
diff --git a/hw/acpi/nvdimm.c b/hw/acpi/nvdimm.c
new file mode 100644
index 00000000..a3b25a92
--- /dev/null
+++ b/hw/acpi/nvdimm.c
@@ -0,0 +1,1469 @@
+/*
+ * NVDIMM ACPI Implementation
+ *
+ * Copyright(C) 2015 Intel Corporation.
+ *
+ * Author:
+ * Xiao Guangrong <guangrong.xiao@linux.intel.com>
+ *
+ * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
+ * and the DSM specification can be found at:
+ * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
+ *
+ * Currently, it only supports PMEM Virtualization.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/uuid.h"
+#include "qapi/error.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/aml-build.h"
+#include "hw/acpi/bios-linker-loader.h"
+#include "hw/nvram/fw_cfg.h"
+#include "hw/mem/nvdimm.h"
+#include "qemu/nvdimm-utils.h"
+#include "trace.h"
+
+/*
+ * define Byte Addressable Persistent Memory (PM) Region according to
+ * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
+ */
+static const uint8_t nvdimm_nfit_spa_uuid[] =
+ UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
+ 0x18, 0xb7, 0x8c, 0xdb);
+
+/*
+ * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
+ * Interface Table (NFIT).
+ */
+
+/*
+ * System Physical Address Range Structure
+ *
+ * It describes the system physical address ranges occupied by NVDIMMs and
+ * the types of the regions.
+ */
+struct NvdimmNfitSpa {
+ uint16_t type;
+ uint16_t length;
+ uint16_t spa_index;
+ uint16_t flags;
+ uint32_t reserved;
+ uint32_t proximity_domain;
+ uint8_t type_guid[16];
+ uint64_t spa_base;
+ uint64_t spa_length;
+ uint64_t mem_attr;
+} QEMU_PACKED;
+typedef struct NvdimmNfitSpa NvdimmNfitSpa;
+
+/*
+ * Memory Device to System Physical Address Range Mapping Structure
+ *
+ * It enables identifying each NVDIMM region and the corresponding SPA
+ * describing the memory interleave
+ */
+struct NvdimmNfitMemDev {
+ uint16_t type;
+ uint16_t length;
+ uint32_t nfit_handle;
+ uint16_t phys_id;
+ uint16_t region_id;
+ uint16_t spa_index;
+ uint16_t dcr_index;
+ uint64_t region_len;
+ uint64_t region_offset;
+ uint64_t region_dpa;
+ uint16_t interleave_index;
+ uint16_t interleave_ways;
+ uint16_t flags;
+ uint16_t reserved;
+} QEMU_PACKED;
+typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
+
+#define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
+
+/*
+ * NVDIMM Control Region Structure
+ *
+ * It describes the NVDIMM and if applicable, Block Control Window.
+ */
+struct NvdimmNfitControlRegion {
+ uint16_t type;
+ uint16_t length;
+ uint16_t dcr_index;
+ uint16_t vendor_id;
+ uint16_t device_id;
+ uint16_t revision_id;
+ uint16_t sub_vendor_id;
+ uint16_t sub_device_id;
+ uint16_t sub_revision_id;
+ uint8_t reserved[6];
+ uint32_t serial_number;
+ uint16_t fic;
+ uint16_t num_bcw;
+ uint64_t bcw_size;
+ uint64_t cmd_offset;
+ uint64_t cmd_size;
+ uint64_t status_offset;
+ uint64_t status_size;
+ uint16_t flags;
+ uint8_t reserved2[6];
+} QEMU_PACKED;
+typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
+
+/*
+ * NVDIMM Platform Capabilities Structure
+ *
+ * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
+ */
+struct NvdimmNfitPlatformCaps {
+ uint16_t type;
+ uint16_t length;
+ uint8_t highest_cap;
+ uint8_t reserved[3];
+ uint32_t capabilities;
+ uint8_t reserved2[4];
+} QEMU_PACKED;
+typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
+
+/*
+ * Module serial number is a unique number for each device. We use the
+ * slot id of NVDIMM device to generate this number so that each device
+ * associates with a different number.
+ *
+ * 0x123456 is a magic number we arbitrarily chose.
+ */
+static uint32_t nvdimm_slot_to_sn(int slot)
+{
+ return 0x123456 + slot;
+}
+
+/*
+ * handle is used to uniquely associate nfit_memdev structure with NVDIMM
+ * ACPI device - nfit_memdev.nfit_handle matches with the value returned
+ * by ACPI device _ADR method.
+ *
+ * We generate the handle with the slot id of NVDIMM device and reserve
+ * 0 for NVDIMM root device.
+ */
+static uint32_t nvdimm_slot_to_handle(int slot)
+{
+ return slot + 1;
+}
+
+/*
+ * index uniquely identifies the structure, 0 is reserved which indicates
+ * that the structure is not valid or the associated structure is not
+ * present.
+ *
+ * Each NVDIMM device needs two indexes, one for nfit_spa and another for
+ * nfit_dc which are generated by the slot id of NVDIMM device.
+ */
+static uint16_t nvdimm_slot_to_spa_index(int slot)
+{
+ return (slot + 1) << 1;
+}
+
+/* See the comments of nvdimm_slot_to_spa_index(). */
+static uint32_t nvdimm_slot_to_dcr_index(int slot)
+{
+ return nvdimm_slot_to_spa_index(slot) + 1;
+}
+
+static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
+{
+ NVDIMMDevice *nvdimm = NULL;
+ GSList *list, *device_list = nvdimm_get_device_list();
+
+ for (list = device_list; list; list = list->next) {
+ NVDIMMDevice *nvd = list->data;
+ int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
+ NULL);
+
+ if (nvdimm_slot_to_handle(slot) == handle) {
+ nvdimm = nvd;
+ break;
+ }
+ }
+
+ g_slist_free(device_list);
+ return nvdimm;
+}
+
+/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
+static void
+nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
+{
+ NvdimmNfitSpa *nfit_spa;
+ uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
+ NULL);
+ uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
+ NULL);
+ uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
+ NULL);
+ int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
+ NULL);
+
+ nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
+
+ nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
+ Structure */);
+ nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
+ nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
+
+ /*
+ * Control region is strict as all the device info, such as SN, index,
+ * is associated with slot id.
+ */
+ nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
+ management during hot add/online
+ operation */ |
+ 2 /* Data in Proximity Domain field is
+ valid*/);
+
+ /* NUMA node. */
+ nfit_spa->proximity_domain = cpu_to_le32(node);
+ /* the region reported as PMEM. */
+ memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
+ sizeof(nvdimm_nfit_spa_uuid));
+
+ nfit_spa->spa_base = cpu_to_le64(addr);
+ nfit_spa->spa_length = cpu_to_le64(size);
+
+ /* It is the PMEM and can be cached as writeback. */
+ nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
+ 0x8000ULL /* EFI_MEMORY_NV */);
+}
+
+/*
+ * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
+ * Structure
+ */
+static void
+nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
+{
+ NvdimmNfitMemDev *nfit_memdev;
+ NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
+ uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
+ NULL);
+ int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
+ NULL);
+ uint32_t handle = nvdimm_slot_to_handle(slot);
+
+ nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
+
+ nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
+ Range Map Structure*/);
+ nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
+ nfit_memdev->nfit_handle = cpu_to_le32(handle);
+
+ /*
+ * associate memory device with System Physical Address Range
+ * Structure.
+ */
+ nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
+ /* associate memory device with Control Region Structure. */
+ nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
+
+ /* The memory region on the device. */
+ nfit_memdev->region_len = cpu_to_le64(size);
+ /* The device address starts from 0. */
+ nfit_memdev->region_dpa = cpu_to_le64(0);
+
+ /* Only one interleave for PMEM. */
+ nfit_memdev->interleave_ways = cpu_to_le16(1);
+
+ if (nvdimm->unarmed) {
+ nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
+ }
+}
+
+/*
+ * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
+ */
+static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
+{
+ NvdimmNfitControlRegion *nfit_dcr;
+ int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
+ NULL);
+ uint32_t sn = nvdimm_slot_to_sn(slot);
+
+ nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
+
+ nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
+ nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
+ nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
+
+ /* vendor: Intel. */
+ nfit_dcr->vendor_id = cpu_to_le16(0x8086);
+ nfit_dcr->device_id = cpu_to_le16(1);
+
+ /* The _DSM method is following Intel's DSM specification. */
+ nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
+ in ACPI 6.0 is 1. */);
+ nfit_dcr->serial_number = cpu_to_le32(sn);
+ nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
+ Byte addressable, no energy backed.
+ See ACPI 6.2, sect 5.2.25.6 and
+ JEDEC Annex L Release 3. */);
+}
+
+/*
+ * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
+ */
+static void
+nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
+{
+ NvdimmNfitPlatformCaps *nfit_caps;
+
+ nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
+
+ nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
+ nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
+ nfit_caps->highest_cap = 31 - clz32(capabilities);
+ nfit_caps->capabilities = cpu_to_le32(capabilities);
+}
+
+static GArray *nvdimm_build_device_structure(NVDIMMState *state)
+{
+ GSList *device_list, *list = nvdimm_get_device_list();
+ GArray *structures = g_array_new(false, true /* clear */, 1);
+
+ for (device_list = list; device_list; device_list = device_list->next) {
+ DeviceState *dev = device_list->data;
+
+ /* build System Physical Address Range Structure. */
+ nvdimm_build_structure_spa(structures, dev);
+
+ /*
+ * build Memory Device to System Physical Address Range Mapping
+ * Structure.
+ */
+ nvdimm_build_structure_memdev(structures, dev);
+
+ /* build NVDIMM Control Region Structure. */
+ nvdimm_build_structure_dcr(structures, dev);
+ }
+ g_slist_free(list);
+
+ if (state->persistence) {
+ nvdimm_build_structure_caps(structures, state->persistence);
+ }
+
+ return structures;
+}
+
+static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
+{
+ fit_buf->fit = g_array_new(false, true /* clear */, 1);
+}
+
+static void nvdimm_build_fit_buffer(NVDIMMState *state)
+{
+ NvdimmFitBuffer *fit_buf = &state->fit_buf;
+
+ g_array_free(fit_buf->fit, true);
+ fit_buf->fit = nvdimm_build_device_structure(state);
+ fit_buf->dirty = true;
+}
+
+void nvdimm_plug(NVDIMMState *state)
+{
+ nvdimm_build_fit_buffer(state);
+}
+
+/*
+ * NVDIMM Firmware Interface Table
+ * @signature: "NFIT"
+ *
+ * It provides information that allows OSPM to enumerate NVDIMM present in
+ * the platform and associate system physical address ranges created by the
+ * NVDIMMs.
+ *
+ * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
+ */
+
+static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
+ GArray *table_data, BIOSLinker *linker,
+ const char *oem_id, const char *oem_table_id)
+{
+ NvdimmFitBuffer *fit_buf = &state->fit_buf;
+ AcpiTable table = { .sig = "NFIT", .rev = 1,
+ .oem_id = oem_id, .oem_table_id = oem_table_id };
+
+ acpi_add_table(table_offsets, table_data);
+
+ acpi_table_begin(&table, table_data);
+ /* Reserved */
+ build_append_int_noprefix(table_data, 0, 4);
+ /* NVDIMM device structures. */
+ g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
+ acpi_table_end(linker, &table);
+}
+
+#define NVDIMM_DSM_MEMORY_SIZE 4096
+
+struct NvdimmDsmIn {
+ uint32_t handle;
+ uint32_t revision;
+ uint32_t function;
+ /* the remaining size in the page is used by arg3. */
+ union {
+ uint8_t arg3[4084];
+ };
+} QEMU_PACKED;
+typedef struct NvdimmDsmIn NvdimmDsmIn;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmDsmOut {
+ /* the size of buffer filled by QEMU. */
+ uint32_t len;
+ uint8_t data[4092];
+} QEMU_PACKED;
+typedef struct NvdimmDsmOut NvdimmDsmOut;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmDsmFunc0Out {
+ /* the size of buffer filled by QEMU. */
+ uint32_t len;
+ uint32_t supported_func;
+} QEMU_PACKED;
+typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
+
+struct NvdimmDsmFuncNoPayloadOut {
+ /* the size of buffer filled by QEMU. */
+ uint32_t len;
+ uint32_t func_ret_status;
+} QEMU_PACKED;
+typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
+
+struct NvdimmFuncGetLabelSizeOut {
+ /* the size of buffer filled by QEMU. */
+ uint32_t len;
+ uint32_t func_ret_status; /* return status code. */
+ uint32_t label_size; /* the size of label data area. */
+ /*
+ * Maximum size of the namespace label data length supported by
+ * the platform in Get/Set Namespace Label Data functions.
+ */
+ uint32_t max_xfer;
+} QEMU_PACKED;
+typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmFuncGetLabelDataIn {
+ uint32_t offset; /* the offset in the namespace label data area. */
+ uint32_t length; /* the size of data is to be read via the function. */
+} QEMU_PACKED;
+typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
+ offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmFuncGetLabelDataOut {
+ /* the size of buffer filled by QEMU. */
+ uint32_t len;
+ uint32_t func_ret_status; /* return status code. */
+ uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
+} QEMU_PACKED;
+typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmFuncSetLabelDataIn {
+ uint32_t offset; /* the offset in the namespace label data area. */
+ uint32_t length; /* the size of data is to be written via the function. */
+ uint8_t in_buf[]; /* the data written to label data area. */
+} QEMU_PACKED;
+typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
+ offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmFuncReadFITIn {
+ uint32_t offset; /* the offset into FIT buffer. */
+} QEMU_PACKED;
+typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
+ offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
+
+struct NvdimmFuncReadFITOut {
+ /* the size of buffer filled by QEMU. */
+ uint32_t len;
+ uint32_t func_ret_status; /* return status code. */
+ uint8_t fit[]; /* the FIT data. */
+} QEMU_PACKED;
+typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
+QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
+
+static void
+nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
+{
+ NvdimmDsmFunc0Out func0 = {
+ .len = cpu_to_le32(sizeof(func0)),
+ .supported_func = cpu_to_le32(supported_func),
+ };
+ cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
+}
+
+static void
+nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
+{
+ NvdimmDsmFuncNoPayloadOut out = {
+ .len = cpu_to_le32(sizeof(out)),
+ .func_ret_status = cpu_to_le32(func_ret_status),
+ };
+ cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
+}
+
+#define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
+#define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
+#define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
+#define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
+#define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
+
+#define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
+
+/* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
+static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
+ hwaddr dsm_mem_addr)
+{
+ NvdimmFitBuffer *fit_buf = &state->fit_buf;
+ NvdimmFuncReadFITIn *read_fit;
+ NvdimmFuncReadFITOut *read_fit_out;
+ GArray *fit;
+ uint32_t read_len = 0, func_ret_status;
+ int size;
+
+ read_fit = (NvdimmFuncReadFITIn *)in->arg3;
+ read_fit->offset = le32_to_cpu(read_fit->offset);
+
+ fit = fit_buf->fit;
+
+ trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
+ fit_buf->dirty ? "Yes" : "No");
+
+ if (read_fit->offset > fit->len) {
+ func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
+ goto exit;
+ }
+
+ /* It is the first time to read FIT. */
+ if (!read_fit->offset) {
+ fit_buf->dirty = false;
+ } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
+ func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
+ goto exit;
+ }
+
+ func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
+ read_len = MIN(fit->len - read_fit->offset,
+ NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
+
+exit:
+ size = sizeof(NvdimmFuncReadFITOut) + read_len;
+ read_fit_out = g_malloc(size);
+
+ read_fit_out->len = cpu_to_le32(size);
+ read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
+ memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
+
+ cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
+
+ g_free(read_fit_out);
+}
+
+static void
+nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
+ NvdimmDsmIn *in, hwaddr dsm_mem_addr)
+{
+ switch (in->function) {
+ case 0x0:
+ nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
+ return;
+ case 0x1 /* Read FIT */:
+ nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
+ return;
+ }
+
+ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
+}
+
+static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
+{
+ /*
+ * function 0 is called to inquire which functions are supported by
+ * OSPM
+ */
+ if (!in->function) {
+ nvdimm_dsm_function0(0 /* No function supported other than
+ function 0 */, dsm_mem_addr);
+ return;
+ }
+
+ /* No function except function 0 is supported yet. */
+ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
+}
+
+/*
+ * the max transfer size is the max size transferred by both a
+ * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
+ * function.
+ */
+static uint32_t nvdimm_get_max_xfer_label_size(void)
+{
+ uint32_t max_get_size, max_set_size, dsm_memory_size;
+
+ dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
+
+ /*
+ * the max data ACPI can read one time which is transferred by
+ * the response of 'Get Namespace Label Data' function.
+ */
+ max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
+
+ /*
+ * the max data ACPI can write one time which is transferred by
+ * 'Set Namespace Label Data' function.
+ */
+ max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
+ sizeof(NvdimmFuncSetLabelDataIn);
+
+ return MIN(max_get_size, max_set_size);
+}
+
+/*
+ * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
+ *
+ * It gets the size of Namespace Label data area and the max data size
+ * that Get/Set Namespace Label Data functions can transfer.
+ */
+static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
+{
+ NvdimmFuncGetLabelSizeOut label_size_out = {
+ .len = cpu_to_le32(sizeof(label_size_out)),
+ };
+ uint32_t label_size, mxfer;
+
+ label_size = nvdimm->label_size;
+ mxfer = nvdimm_get_max_xfer_label_size();
+
+ trace_acpi_nvdimm_label_info(label_size, mxfer);
+
+ label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
+ label_size_out.label_size = cpu_to_le32(label_size);
+ label_size_out.max_xfer = cpu_to_le32(mxfer);
+
+ cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
+ sizeof(label_size_out));
+}
+
+static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
+ uint32_t offset, uint32_t length)
+{
+ uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
+
+ if (offset + length < offset) {
+ trace_acpi_nvdimm_label_overflow(offset, length);
+ return ret;
+ }
+
+ if (nvdimm->label_size < offset + length) {
+ trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
+ return ret;
+ }
+
+ if (length > nvdimm_get_max_xfer_label_size()) {
+ trace_acpi_nvdimm_label_xfer_exceed(length,
+ nvdimm_get_max_xfer_label_size());
+ return ret;
+ }
+
+ return NVDIMM_DSM_RET_STATUS_SUCCESS;
+}
+
+/*
+ * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
+ */
+static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
+ hwaddr dsm_mem_addr)
+{
+ NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
+ NvdimmFuncGetLabelDataIn *get_label_data;
+ NvdimmFuncGetLabelDataOut *get_label_data_out;
+ uint32_t status;
+ int size;
+
+ get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
+ get_label_data->offset = le32_to_cpu(get_label_data->offset);
+ get_label_data->length = le32_to_cpu(get_label_data->length);
+
+ trace_acpi_nvdimm_read_label(get_label_data->offset,
+ get_label_data->length);
+
+ status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
+ get_label_data->length);
+ if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
+ nvdimm_dsm_no_payload(status, dsm_mem_addr);
+ return;
+ }
+
+ size = sizeof(*get_label_data_out) + get_label_data->length;
+ assert(size <= NVDIMM_DSM_MEMORY_SIZE);
+ get_label_data_out = g_malloc(size);
+
+ get_label_data_out->len = cpu_to_le32(size);
+ get_label_data_out->func_ret_status =
+ cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
+ nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
+ get_label_data->length, get_label_data->offset);
+
+ cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
+ g_free(get_label_data_out);
+}
+
+/*
+ * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
+ */
+static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
+ hwaddr dsm_mem_addr)
+{
+ NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
+ NvdimmFuncSetLabelDataIn *set_label_data;
+ uint32_t status;
+
+ set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
+
+ set_label_data->offset = le32_to_cpu(set_label_data->offset);
+ set_label_data->length = le32_to_cpu(set_label_data->length);
+
+ trace_acpi_nvdimm_write_label(set_label_data->offset,
+ set_label_data->length);
+
+ status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
+ set_label_data->length);
+ if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
+ nvdimm_dsm_no_payload(status, dsm_mem_addr);
+ return;
+ }
+
+ assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
+ set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
+
+ nvc->write_label_data(nvdimm, set_label_data->in_buf,
+ set_label_data->length, set_label_data->offset);
+ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
+}
+
+static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
+{
+ NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
+
+ /* See the comments in nvdimm_dsm_root(). */
+ if (!in->function) {
+ uint32_t supported_func = 0;
+
+ if (nvdimm && nvdimm->label_size) {
+ supported_func |= 0x1 /* Bit 0 indicates whether there is
+ support for any functions other
+ than function 0. */ |
+ 1 << 4 /* Get Namespace Label Size */ |
+ 1 << 5 /* Get Namespace Label Data */ |
+ 1 << 6 /* Set Namespace Label Data */;
+ }
+ nvdimm_dsm_function0(supported_func, dsm_mem_addr);
+ return;
+ }
+
+ if (!nvdimm) {
+ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
+ dsm_mem_addr);
+ return;
+ }
+
+ /* Encode DSM function according to DSM Spec Rev1. */
+ switch (in->function) {
+ case 4 /* Get Namespace Label Size */:
+ if (nvdimm->label_size) {
+ nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
+ return;
+ }
+ break;
+ case 5 /* Get Namespace Label Data */:
+ if (nvdimm->label_size) {
+ nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
+ return;
+ }
+ break;
+ case 0x6 /* Set Namespace Label Data */:
+ if (nvdimm->label_size) {
+ nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
+ return;
+ }
+ break;
+ }
+
+ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
+}
+
+static uint64_t
+nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
+{
+ trace_acpi_nvdimm_read_io_port();
+ return 0;
+}
+
+static void
+nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
+{
+ NVDIMMState *state = opaque;
+ NvdimmDsmIn *in;
+ hwaddr dsm_mem_addr = val;
+
+ trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
+
+ /*
+ * The DSM memory is mapped to guest address space so an evil guest
+ * can change its content while we are doing DSM emulation. Avoid
+ * this by copying DSM memory to QEMU local memory.
+ */
+ in = g_new(NvdimmDsmIn, 1);
+ cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
+
+ in->revision = le32_to_cpu(in->revision);
+ in->function = le32_to_cpu(in->function);
+ in->handle = le32_to_cpu(in->handle);
+
+ trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
+
+ if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
+ trace_acpi_nvdimm_invalid_revision(in->revision);
+ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
+ goto exit;
+ }
+
+ if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
+ nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
+ goto exit;
+ }
+
+ /* Handle 0 is reserved for NVDIMM Root Device. */
+ if (!in->handle) {
+ nvdimm_dsm_root(in, dsm_mem_addr);
+ goto exit;
+ }
+
+ nvdimm_dsm_device(in, dsm_mem_addr);
+
+exit:
+ g_free(in);
+}
+
+static const MemoryRegionOps nvdimm_dsm_ops = {
+ .read = nvdimm_dsm_read,
+ .write = nvdimm_dsm_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .valid = {
+ .min_access_size = 4,
+ .max_access_size = 4,
+ },
+};
+
+void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
+{
+ if (dev->hotplugged) {
+ acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
+ }
+}
+
+void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
+ struct AcpiGenericAddress dsm_io,
+ FWCfgState *fw_cfg, Object *owner)
+{
+ state->dsm_io = dsm_io;
+ memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
+ "nvdimm-acpi-io", dsm_io.bit_width >> 3);
+ memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
+
+ state->dsm_mem = g_array_new(false, true /* clear */, 1);
+ acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
+ fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
+ state->dsm_mem->len);
+
+ nvdimm_init_fit_buffer(&state->fit_buf);
+}
+
+#define NVDIMM_COMMON_DSM "NCAL"
+#define NVDIMM_ACPI_MEM_ADDR "MEMA"
+
+#define NVDIMM_DSM_MEMORY "NRAM"
+#define NVDIMM_DSM_IOPORT "NPIO"
+
+#define NVDIMM_DSM_NOTIFY "NTFI"
+#define NVDIMM_DSM_HANDLE "HDLE"
+#define NVDIMM_DSM_REVISION "REVS"
+#define NVDIMM_DSM_FUNCTION "FUNC"
+#define NVDIMM_DSM_ARG3 "FARG"
+
+#define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
+#define NVDIMM_DSM_OUT_BUF "ODAT"
+
+#define NVDIMM_DSM_RFIT_STATUS "RSTA"
+
+#define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
+#define NVDIMM_DEVICE_DSM_UUID "4309AC30-0D11-11E4-9191-0800200C9A66"
+
+static void nvdimm_build_common_dsm(Aml *dev,
+ NVDIMMState *nvdimm_state)
+{
+ Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
+ Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
+ Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
+ Aml *whilectx, *offset;
+ uint8_t byte_list[1];
+ AmlRegionSpace rs;
+
+ method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
+ uuid = aml_arg(0);
+ function = aml_arg(2);
+ handle = aml_arg(4);
+ dsm_mem = aml_local(6);
+ dsm_out_buf = aml_local(7);
+
+ aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
+
+ if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
+ rs = AML_SYSTEM_IO;
+ } else {
+ rs = AML_SYSTEM_MEMORY;
+ }
+
+ /* map DSM memory and IO into ACPI namespace. */
+ aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
+ aml_int(nvdimm_state->dsm_io.address),
+ nvdimm_state->dsm_io.bit_width >> 3));
+ aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
+ AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
+
+ /*
+ * DSM notifier:
+ * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
+ * emulate the access.
+ *
+ * It is the IO port so that accessing them will cause VM-exit, the
+ * control will be transferred to QEMU.
+ */
+ field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
+ AML_PRESERVE);
+ aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
+ nvdimm_state->dsm_io.bit_width));
+ aml_append(method, field);
+
+ /*
+ * DSM input:
+ * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
+ * happens on NVDIMM Root Device.
+ * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
+ * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
+ * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
+ * containing function-specific arguments.
+ *
+ * They are RAM mapping on host so that these accesses never cause
+ * VM-EXIT.
+ */
+ field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
+ AML_PRESERVE);
+ aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
+ sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
+ aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
+ sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
+ aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
+ sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
+ aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
+ (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
+ aml_append(method, field);
+
+ /*
+ * DSM output:
+ * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
+ * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
+ *
+ * Since the page is reused by both input and out, the input data
+ * will be lost after storing new result into ODAT so we should fetch
+ * all the input data before writing the result.
+ */
+ field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
+ AML_PRESERVE);
+ aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
+ sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
+ aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
+ (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
+ aml_append(method, field);
+
+ /*
+ * do not support any method if DSM memory address has not been
+ * patched.
+ */
+ unpatched = aml_equal(dsm_mem, aml_int(0x0));
+
+ expected_uuid = aml_local(0);
+
+ ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
+ aml_append(ifctx, aml_store(
+ aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
+ /* UUID for NVDIMM Root Device */, expected_uuid));
+ aml_append(method, ifctx);
+ elsectx = aml_else();
+ ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
+ aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
+ /* UUID for QEMU internal use */), expected_uuid));
+ aml_append(elsectx, ifctx);
+ elsectx2 = aml_else();
+ aml_append(elsectx2, aml_store(aml_touuid(NVDIMM_DEVICE_DSM_UUID)
+ /* UUID for NVDIMM Devices */, expected_uuid));
+ aml_append(elsectx, elsectx2);
+ aml_append(method, elsectx);
+
+ uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
+
+ unsupport = aml_if(aml_lor(unpatched, uuid_invalid));
+
+ /*
+ * function 0 is called to inquire what functions are supported by
+ * OSPM
+ */
+ ifctx = aml_if(aml_equal(function, aml_int(0)));
+ byte_list[0] = 0 /* No function Supported */;
+ aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
+ aml_append(unsupport, ifctx);
+
+ /* No function is supported yet. */
+ byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
+ aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
+ aml_append(method, unsupport);
+
+ /*
+ * The HDLE indicates the DSM function is issued from which device,
+ * it reserves 0 for root device and is the handle for NVDIMM devices.
+ * See the comments in nvdimm_slot_to_handle().
+ */
+ aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
+ aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
+ aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
+
+ /*
+ * The fourth parameter (Arg3) of _DSM is a package which contains
+ * a buffer, the layout of the buffer is specified by UUID (Arg0),
+ * Revision ID (Arg1) and Function Index (Arg2) which are documented
+ * in the DSM Spec.
+ */
+ pckg = aml_arg(3);
+ ifctx = aml_if(aml_land(aml_equal(aml_object_type(pckg),
+ aml_int(4 /* Package */)) /* It is a Package? */,
+ aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */));
+
+ pckg_index = aml_local(2);
+ pckg_buf = aml_local(3);
+ aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
+ aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
+ aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
+ aml_append(method, ifctx);
+
+ /*
+ * tell QEMU about the real address of DSM memory, then QEMU
+ * gets the control and fills the result in DSM memory.
+ */
+ aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
+
+ dsm_out_buf_size = aml_local(1);
+ /* RLEN is not included in the payload returned to guest. */
+ aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
+ aml_int(4), dsm_out_buf_size));
+
+ /*
+ * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
+ * the Buffer Field <= to the size of an Integer (in bits), it will
+ * be treated as an integer. Moreover, the integer size depends on
+ * DSDT tables revision number. If revision number is < 2, integer
+ * size is 32 bits, otherwise it is 64 bits.
+ * Because of this CreateField() canot be used if RLEN < Integer Size.
+ *
+ * Also please note that APCI ASL operator SizeOf() doesn't support
+ * Integer and there isn't any other way to figure out the Integer
+ * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
+ * build dsm_out_buf byte by byte.
+ */
+ ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
+ offset = aml_local(2);
+ aml_append(ifctx, aml_store(aml_int(0), offset));
+ aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
+ aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
+
+ whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
+ /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
+ aml_append(whilectx, aml_store(aml_derefof(aml_index(
+ aml_name(NVDIMM_DSM_OUT_BUF), offset)),
+ aml_index(aml_name("TBUF"), aml_int(0))));
+ aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
+ dsm_out_buf));
+ aml_append(whilectx, aml_increment(offset));
+ aml_append(ifctx, whilectx);
+
+ aml_append(ifctx, aml_return(dsm_out_buf));
+ aml_append(method, ifctx);
+
+ /* If RLEN >= Integer size, just use CreateField() operator */
+ aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
+ dsm_out_buf_size));
+ aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
+ aml_int(0), dsm_out_buf_size, "OBUF"));
+ aml_append(method, aml_return(aml_name("OBUF")));
+
+ aml_append(dev, method);
+}
+
+static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
+{
+ Aml *method;
+
+ method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
+ aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
+ aml_arg(1), aml_arg(2), aml_arg(3),
+ aml_int(handle))));
+ aml_append(dev, method);
+}
+
+static void nvdimm_build_fit(Aml *dev)
+{
+ Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
+ Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
+
+ buf = aml_local(0);
+ buf_size = aml_local(1);
+ fit = aml_local(2);
+
+ aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
+
+ /* build helper function, RFIT. */
+ method = aml_method("RFIT", 1, AML_SERIALIZED);
+ aml_append(method, aml_name_decl("OFST", aml_int(0)));
+
+ /* prepare input package. */
+ pkg = aml_package(1);
+ aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
+ aml_append(pkg, aml_name("OFST"));
+
+ /* call Read_FIT function. */
+ call_result = aml_call5(NVDIMM_COMMON_DSM,
+ aml_touuid(NVDIMM_QEMU_RSVD_UUID),
+ aml_int(1) /* Revision 1 */,
+ aml_int(0x1) /* Read FIT */,
+ pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
+ aml_append(method, aml_store(call_result, buf));
+
+ /* handle _DSM result. */
+ aml_append(method, aml_create_dword_field(buf,
+ aml_int(0) /* offset at byte 0 */, "STAU"));
+
+ aml_append(method, aml_store(aml_name("STAU"),
+ aml_name(NVDIMM_DSM_RFIT_STATUS)));
+
+ /* if something is wrong during _DSM. */
+ ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
+ aml_name("STAU"));
+ ifctx = aml_if(aml_lnot(ifcond));
+ aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
+ aml_append(method, ifctx);
+
+ aml_append(method, aml_store(aml_sizeof(buf), buf_size));
+ aml_append(method, aml_subtract(buf_size,
+ aml_int(4) /* the size of "STAU" */,
+ buf_size));
+
+ /* if we read the end of fit. */
+ ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
+ aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
+ aml_append(method, ifctx);
+
+ aml_append(method, aml_create_field(buf,
+ aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
+ aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
+ aml_append(method, aml_return(aml_name("BUFF")));
+ aml_append(dev, method);
+
+ /* build _FIT. */
+ method = aml_method("_FIT", 0, AML_SERIALIZED);
+ offset = aml_local(3);
+
+ aml_append(method, aml_store(aml_buffer(0, NULL), fit));
+ aml_append(method, aml_store(aml_int(0), offset));
+
+ whilectx = aml_while(aml_int(1));
+ aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
+ aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
+
+ /*
+ * if fit buffer was changed during RFIT, read from the beginning
+ * again.
+ */
+ ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
+ aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
+ aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
+ aml_append(ifctx, aml_store(aml_int(0), offset));
+ aml_append(whilectx, ifctx);
+
+ elsectx = aml_else();
+
+ /* finish fit read if no data is read out. */
+ ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
+ aml_append(ifctx, aml_return(fit));
+ aml_append(elsectx, ifctx);
+
+ /* update the offset. */
+ aml_append(elsectx, aml_add(offset, buf_size, offset));
+ /* append the data we read out to the fit buffer. */
+ aml_append(elsectx, aml_concatenate(fit, buf, fit));
+ aml_append(whilectx, elsectx);
+ aml_append(method, whilectx);
+
+ aml_append(dev, method);
+}
+
+static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
+{
+ uint32_t slot;
+ Aml *method, *pkg, *field, *com_call;
+
+ for (slot = 0; slot < ram_slots; slot++) {
+ uint32_t handle = nvdimm_slot_to_handle(slot);
+ Aml *nvdimm_dev;
+
+ nvdimm_dev = aml_device("NV%02X", slot);
+
+ /*
+ * ACPI 6.0: 9.20 NVDIMM Devices:
+ *
+ * _ADR object that is used to supply OSPM with unique address
+ * of the NVDIMM device. This is done by returning the NFIT Device
+ * handle that is used to identify the associated entries in ACPI
+ * table NFIT or _FIT.
+ */
+ aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
+
+ /*
+ * ACPI v6.4: Section 6.5.10 NVDIMM Label Methods
+ */
+ /* _LSI */
+ method = aml_method("_LSI", 0, AML_SERIALIZED);
+ com_call = aml_call5(NVDIMM_COMMON_DSM,
+ aml_touuid(NVDIMM_DEVICE_DSM_UUID),
+ aml_int(1), aml_int(4), aml_int(0),
+ aml_int(handle));
+ aml_append(method, aml_store(com_call, aml_local(0)));
+
+ aml_append(method, aml_create_dword_field(aml_local(0),
+ aml_int(0), "STTS"));
+ aml_append(method, aml_create_dword_field(aml_local(0), aml_int(4),
+ "SLSA"));
+ aml_append(method, aml_create_dword_field(aml_local(0), aml_int(8),
+ "MAXT"));
+
+ pkg = aml_package(3);
+ aml_append(pkg, aml_name("STTS"));
+ aml_append(pkg, aml_name("SLSA"));
+ aml_append(pkg, aml_name("MAXT"));
+ aml_append(method, aml_store(pkg, aml_local(1)));
+ aml_append(method, aml_return(aml_local(1)));
+
+ aml_append(nvdimm_dev, method);
+
+ /* _LSR */
+ method = aml_method("_LSR", 2, AML_SERIALIZED);
+ aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
+
+ aml_append(method, aml_create_dword_field(aml_name("INPT"),
+ aml_int(0), "OFST"));
+ aml_append(method, aml_create_dword_field(aml_name("INPT"),
+ aml_int(4), "LEN"));
+ aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
+ aml_append(method, aml_store(aml_arg(1), aml_name("LEN")));
+
+ pkg = aml_package(1);
+ aml_append(pkg, aml_name("INPT"));
+ aml_append(method, aml_store(pkg, aml_local(0)));
+
+ com_call = aml_call5(NVDIMM_COMMON_DSM,
+ aml_touuid(NVDIMM_DEVICE_DSM_UUID),
+ aml_int(1), aml_int(5), aml_local(0),
+ aml_int(handle));
+ aml_append(method, aml_store(com_call, aml_local(3)));
+ field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
+ aml_append(method, field);
+ field = aml_create_field(aml_local(3), aml_int(32),
+ aml_shiftleft(aml_name("LEN"), aml_int(3)),
+ "LDAT");
+ aml_append(method, field);
+ aml_append(method, aml_name_decl("LSA", aml_buffer(0, NULL)));
+ aml_append(method, aml_to_buffer(aml_name("LDAT"), aml_name("LSA")));
+
+ pkg = aml_package(2);
+ aml_append(pkg, aml_name("STTS"));
+ aml_append(pkg, aml_name("LSA"));
+
+ aml_append(method, aml_store(pkg, aml_local(1)));
+ aml_append(method, aml_return(aml_local(1)));
+
+ aml_append(nvdimm_dev, method);
+
+ /* _LSW */
+ method = aml_method("_LSW", 3, AML_SERIALIZED);
+ aml_append(method, aml_store(aml_arg(2), aml_local(2)));
+ aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
+ field = aml_create_dword_field(aml_name("INPT"),
+ aml_int(0), "OFST");
+ aml_append(method, field);
+ field = aml_create_dword_field(aml_name("INPT"),
+ aml_int(4), "TLEN");
+ aml_append(method, field);
+ aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
+ aml_append(method, aml_store(aml_arg(1), aml_name("TLEN")));
+
+ aml_append(method, aml_concatenate(aml_name("INPT"), aml_local(2),
+ aml_name("INPT")));
+ pkg = aml_package(1);
+ aml_append(pkg, aml_name("INPT"));
+ aml_append(method, aml_store(pkg, aml_local(0)));
+ com_call = aml_call5(NVDIMM_COMMON_DSM,
+ aml_touuid(NVDIMM_DEVICE_DSM_UUID),
+ aml_int(1), aml_int(6), aml_local(0),
+ aml_int(handle));
+ aml_append(method, aml_store(com_call, aml_local(3)));
+ field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
+ aml_append(method, field);
+ aml_append(method, aml_return(aml_name("STTS")));
+
+ aml_append(nvdimm_dev, method);
+
+ nvdimm_build_device_dsm(nvdimm_dev, handle);
+ aml_append(root_dev, nvdimm_dev);
+ }
+}
+
+static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
+ BIOSLinker *linker,
+ NVDIMMState *nvdimm_state,
+ uint32_t ram_slots, const char *oem_id)
+{
+ int mem_addr_offset;
+ Aml *ssdt, *sb_scope, *dev;
+ AcpiTable table = { .sig = "SSDT", .rev = 1,
+ .oem_id = oem_id, .oem_table_id = "NVDIMM" };
+
+ acpi_add_table(table_offsets, table_data);
+
+ acpi_table_begin(&table, table_data);
+ ssdt = init_aml_allocator();
+ sb_scope = aml_scope("\\_SB");
+
+ dev = aml_device("NVDR");
+
+ /*
+ * ACPI 6.0: 9.20 NVDIMM Devices:
+ *
+ * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
+ * NVDIMM interface device. Platform firmware is required to contain one
+ * such device in _SB scope if NVDIMMs support is exposed by platform to
+ * OSPM.
+ * For each NVDIMM present or intended to be supported by platform,
+ * platform firmware also exposes an ACPI Namespace Device under the
+ * root device.
+ */
+ aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
+
+ nvdimm_build_common_dsm(dev, nvdimm_state);
+
+ /* 0 is reserved for root device. */
+ nvdimm_build_device_dsm(dev, 0);
+ nvdimm_build_fit(dev);
+
+ nvdimm_build_nvdimm_devices(dev, ram_slots);
+
+ aml_append(sb_scope, dev);
+ aml_append(ssdt, sb_scope);
+
+ /* copy AML table into ACPI tables blob and patch header there */
+ g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
+ mem_addr_offset = build_append_named_dword(table_data,
+ NVDIMM_ACPI_MEM_ADDR);
+
+ bios_linker_loader_alloc(linker,
+ NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
+ sizeof(NvdimmDsmIn), false /* high memory */);
+ bios_linker_loader_add_pointer(linker,
+ ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
+ NVDIMM_DSM_MEM_FILE, 0);
+ free_aml_allocator();
+ /*
+ * must be executed as the last so that pointer patching command above
+ * would be executed by guest before it recalculated checksum which were
+ * scheduled by acpi_table_end()
+ */
+ acpi_table_end(linker, &table);
+}
+
+void nvdimm_build_srat(GArray *table_data)
+{
+ GSList *device_list, *list = nvdimm_get_device_list();
+
+ for (device_list = list; device_list; device_list = device_list->next) {
+ DeviceState *dev = device_list->data;
+ Object *obj = OBJECT(dev);
+ uint64_t addr, size;
+ int node;
+
+ node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
+ addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
+ size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
+
+ build_srat_memory(table_data, addr, size, node,
+ MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
+ }
+ g_slist_free(list);
+}
+
+void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
+ BIOSLinker *linker, NVDIMMState *state,
+ uint32_t ram_slots, const char *oem_id,
+ const char *oem_table_id)
+{
+ GSList *device_list;
+
+ /* no nvdimm device can be plugged. */
+ if (!ram_slots) {
+ return;
+ }
+
+ nvdimm_build_ssdt(table_offsets, table_data, linker, state,
+ ram_slots, oem_id);
+
+ device_list = nvdimm_get_device_list();
+ /* no NVDIMM device is plugged. */
+ if (!device_list) {
+ return;
+ }
+
+ nvdimm_build_nfit(state, table_offsets, table_data, linker,
+ oem_id, oem_table_id);
+ g_slist_free(device_list);
+}