diff options
Diffstat (limited to 'hw/acpi/nvdimm.c')
-rw-r--r-- | hw/acpi/nvdimm.c | 1469 |
1 files changed, 1469 insertions, 0 deletions
diff --git a/hw/acpi/nvdimm.c b/hw/acpi/nvdimm.c new file mode 100644 index 00000000..a3b25a92 --- /dev/null +++ b/hw/acpi/nvdimm.c @@ -0,0 +1,1469 @@ +/* + * NVDIMM ACPI Implementation + * + * Copyright(C) 2015 Intel Corporation. + * + * Author: + * Xiao Guangrong <guangrong.xiao@linux.intel.com> + * + * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) + * and the DSM specification can be found at: + * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf + * + * Currently, it only supports PMEM Virtualization. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/> + */ + +#include "qemu/osdep.h" +#include "qemu/uuid.h" +#include "qapi/error.h" +#include "hw/acpi/acpi.h" +#include "hw/acpi/aml-build.h" +#include "hw/acpi/bios-linker-loader.h" +#include "hw/nvram/fw_cfg.h" +#include "hw/mem/nvdimm.h" +#include "qemu/nvdimm-utils.h" +#include "trace.h" + +/* + * define Byte Addressable Persistent Memory (PM) Region according to + * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. + */ +static const uint8_t nvdimm_nfit_spa_uuid[] = + UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, + 0x18, 0xb7, 0x8c, 0xdb); + +/* + * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware + * Interface Table (NFIT). + */ + +/* + * System Physical Address Range Structure + * + * It describes the system physical address ranges occupied by NVDIMMs and + * the types of the regions. + */ +struct NvdimmNfitSpa { + uint16_t type; + uint16_t length; + uint16_t spa_index; + uint16_t flags; + uint32_t reserved; + uint32_t proximity_domain; + uint8_t type_guid[16]; + uint64_t spa_base; + uint64_t spa_length; + uint64_t mem_attr; +} QEMU_PACKED; +typedef struct NvdimmNfitSpa NvdimmNfitSpa; + +/* + * Memory Device to System Physical Address Range Mapping Structure + * + * It enables identifying each NVDIMM region and the corresponding SPA + * describing the memory interleave + */ +struct NvdimmNfitMemDev { + uint16_t type; + uint16_t length; + uint32_t nfit_handle; + uint16_t phys_id; + uint16_t region_id; + uint16_t spa_index; + uint16_t dcr_index; + uint64_t region_len; + uint64_t region_offset; + uint64_t region_dpa; + uint16_t interleave_index; + uint16_t interleave_ways; + uint16_t flags; + uint16_t reserved; +} QEMU_PACKED; +typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; + +#define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) + +/* + * NVDIMM Control Region Structure + * + * It describes the NVDIMM and if applicable, Block Control Window. + */ +struct NvdimmNfitControlRegion { + uint16_t type; + uint16_t length; + uint16_t dcr_index; + uint16_t vendor_id; + uint16_t device_id; + uint16_t revision_id; + uint16_t sub_vendor_id; + uint16_t sub_device_id; + uint16_t sub_revision_id; + uint8_t reserved[6]; + uint32_t serial_number; + uint16_t fic; + uint16_t num_bcw; + uint64_t bcw_size; + uint64_t cmd_offset; + uint64_t cmd_size; + uint64_t status_offset; + uint64_t status_size; + uint16_t flags; + uint8_t reserved2[6]; +} QEMU_PACKED; +typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; + +/* + * NVDIMM Platform Capabilities Structure + * + * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 + */ +struct NvdimmNfitPlatformCaps { + uint16_t type; + uint16_t length; + uint8_t highest_cap; + uint8_t reserved[3]; + uint32_t capabilities; + uint8_t reserved2[4]; +} QEMU_PACKED; +typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; + +/* + * Module serial number is a unique number for each device. We use the + * slot id of NVDIMM device to generate this number so that each device + * associates with a different number. + * + * 0x123456 is a magic number we arbitrarily chose. + */ +static uint32_t nvdimm_slot_to_sn(int slot) +{ + return 0x123456 + slot; +} + +/* + * handle is used to uniquely associate nfit_memdev structure with NVDIMM + * ACPI device - nfit_memdev.nfit_handle matches with the value returned + * by ACPI device _ADR method. + * + * We generate the handle with the slot id of NVDIMM device and reserve + * 0 for NVDIMM root device. + */ +static uint32_t nvdimm_slot_to_handle(int slot) +{ + return slot + 1; +} + +/* + * index uniquely identifies the structure, 0 is reserved which indicates + * that the structure is not valid or the associated structure is not + * present. + * + * Each NVDIMM device needs two indexes, one for nfit_spa and another for + * nfit_dc which are generated by the slot id of NVDIMM device. + */ +static uint16_t nvdimm_slot_to_spa_index(int slot) +{ + return (slot + 1) << 1; +} + +/* See the comments of nvdimm_slot_to_spa_index(). */ +static uint32_t nvdimm_slot_to_dcr_index(int slot) +{ + return nvdimm_slot_to_spa_index(slot) + 1; +} + +static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) +{ + NVDIMMDevice *nvdimm = NULL; + GSList *list, *device_list = nvdimm_get_device_list(); + + for (list = device_list; list; list = list->next) { + NVDIMMDevice *nvd = list->data; + int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, + NULL); + + if (nvdimm_slot_to_handle(slot) == handle) { + nvdimm = nvd; + break; + } + } + + g_slist_free(device_list); + return nvdimm; +} + +/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ +static void +nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) +{ + NvdimmNfitSpa *nfit_spa; + uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, + NULL); + uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, + NULL); + uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, + NULL); + int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, + NULL); + + nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); + + nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range + Structure */); + nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); + nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); + + /* + * Control region is strict as all the device info, such as SN, index, + * is associated with slot id. + */ + nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for + management during hot add/online + operation */ | + 2 /* Data in Proximity Domain field is + valid*/); + + /* NUMA node. */ + nfit_spa->proximity_domain = cpu_to_le32(node); + /* the region reported as PMEM. */ + memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, + sizeof(nvdimm_nfit_spa_uuid)); + + nfit_spa->spa_base = cpu_to_le64(addr); + nfit_spa->spa_length = cpu_to_le64(size); + + /* It is the PMEM and can be cached as writeback. */ + nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | + 0x8000ULL /* EFI_MEMORY_NV */); +} + +/* + * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping + * Structure + */ +static void +nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) +{ + NvdimmNfitMemDev *nfit_memdev; + NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); + uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, + NULL); + int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, + NULL); + uint32_t handle = nvdimm_slot_to_handle(slot); + + nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); + + nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address + Range Map Structure*/); + nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); + nfit_memdev->nfit_handle = cpu_to_le32(handle); + + /* + * associate memory device with System Physical Address Range + * Structure. + */ + nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); + /* associate memory device with Control Region Structure. */ + nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); + + /* The memory region on the device. */ + nfit_memdev->region_len = cpu_to_le64(size); + /* The device address starts from 0. */ + nfit_memdev->region_dpa = cpu_to_le64(0); + + /* Only one interleave for PMEM. */ + nfit_memdev->interleave_ways = cpu_to_le16(1); + + if (nvdimm->unarmed) { + nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); + } +} + +/* + * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. + */ +static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) +{ + NvdimmNfitControlRegion *nfit_dcr; + int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, + NULL); + uint32_t sn = nvdimm_slot_to_sn(slot); + + nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); + + nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); + nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); + nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); + + /* vendor: Intel. */ + nfit_dcr->vendor_id = cpu_to_le16(0x8086); + nfit_dcr->device_id = cpu_to_le16(1); + + /* The _DSM method is following Intel's DSM specification. */ + nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported + in ACPI 6.0 is 1. */); + nfit_dcr->serial_number = cpu_to_le32(sn); + nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: + Byte addressable, no energy backed. + See ACPI 6.2, sect 5.2.25.6 and + JEDEC Annex L Release 3. */); +} + +/* + * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure + */ +static void +nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) +{ + NvdimmNfitPlatformCaps *nfit_caps; + + nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); + + nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); + nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); + nfit_caps->highest_cap = 31 - clz32(capabilities); + nfit_caps->capabilities = cpu_to_le32(capabilities); +} + +static GArray *nvdimm_build_device_structure(NVDIMMState *state) +{ + GSList *device_list, *list = nvdimm_get_device_list(); + GArray *structures = g_array_new(false, true /* clear */, 1); + + for (device_list = list; device_list; device_list = device_list->next) { + DeviceState *dev = device_list->data; + + /* build System Physical Address Range Structure. */ + nvdimm_build_structure_spa(structures, dev); + + /* + * build Memory Device to System Physical Address Range Mapping + * Structure. + */ + nvdimm_build_structure_memdev(structures, dev); + + /* build NVDIMM Control Region Structure. */ + nvdimm_build_structure_dcr(structures, dev); + } + g_slist_free(list); + + if (state->persistence) { + nvdimm_build_structure_caps(structures, state->persistence); + } + + return structures; +} + +static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) +{ + fit_buf->fit = g_array_new(false, true /* clear */, 1); +} + +static void nvdimm_build_fit_buffer(NVDIMMState *state) +{ + NvdimmFitBuffer *fit_buf = &state->fit_buf; + + g_array_free(fit_buf->fit, true); + fit_buf->fit = nvdimm_build_device_structure(state); + fit_buf->dirty = true; +} + +void nvdimm_plug(NVDIMMState *state) +{ + nvdimm_build_fit_buffer(state); +} + +/* + * NVDIMM Firmware Interface Table + * @signature: "NFIT" + * + * It provides information that allows OSPM to enumerate NVDIMM present in + * the platform and associate system physical address ranges created by the + * NVDIMMs. + * + * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) + */ + +static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, + GArray *table_data, BIOSLinker *linker, + const char *oem_id, const char *oem_table_id) +{ + NvdimmFitBuffer *fit_buf = &state->fit_buf; + AcpiTable table = { .sig = "NFIT", .rev = 1, + .oem_id = oem_id, .oem_table_id = oem_table_id }; + + acpi_add_table(table_offsets, table_data); + + acpi_table_begin(&table, table_data); + /* Reserved */ + build_append_int_noprefix(table_data, 0, 4); + /* NVDIMM device structures. */ + g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); + acpi_table_end(linker, &table); +} + +#define NVDIMM_DSM_MEMORY_SIZE 4096 + +struct NvdimmDsmIn { + uint32_t handle; + uint32_t revision; + uint32_t function; + /* the remaining size in the page is used by arg3. */ + union { + uint8_t arg3[4084]; + }; +} QEMU_PACKED; +typedef struct NvdimmDsmIn NvdimmDsmIn; +QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmDsmOut { + /* the size of buffer filled by QEMU. */ + uint32_t len; + uint8_t data[4092]; +} QEMU_PACKED; +typedef struct NvdimmDsmOut NvdimmDsmOut; +QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmDsmFunc0Out { + /* the size of buffer filled by QEMU. */ + uint32_t len; + uint32_t supported_func; +} QEMU_PACKED; +typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; + +struct NvdimmDsmFuncNoPayloadOut { + /* the size of buffer filled by QEMU. */ + uint32_t len; + uint32_t func_ret_status; +} QEMU_PACKED; +typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; + +struct NvdimmFuncGetLabelSizeOut { + /* the size of buffer filled by QEMU. */ + uint32_t len; + uint32_t func_ret_status; /* return status code. */ + uint32_t label_size; /* the size of label data area. */ + /* + * Maximum size of the namespace label data length supported by + * the platform in Get/Set Namespace Label Data functions. + */ + uint32_t max_xfer; +} QEMU_PACKED; +typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; +QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmFuncGetLabelDataIn { + uint32_t offset; /* the offset in the namespace label data area. */ + uint32_t length; /* the size of data is to be read via the function. */ +} QEMU_PACKED; +typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; +QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + + offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmFuncGetLabelDataOut { + /* the size of buffer filled by QEMU. */ + uint32_t len; + uint32_t func_ret_status; /* return status code. */ + uint8_t out_buf[]; /* the data got via Get Namespace Label function. */ +} QEMU_PACKED; +typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; +QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmFuncSetLabelDataIn { + uint32_t offset; /* the offset in the namespace label data area. */ + uint32_t length; /* the size of data is to be written via the function. */ + uint8_t in_buf[]; /* the data written to label data area. */ +} QEMU_PACKED; +typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; +QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + + offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmFuncReadFITIn { + uint32_t offset; /* the offset into FIT buffer. */ +} QEMU_PACKED; +typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; +QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + + offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); + +struct NvdimmFuncReadFITOut { + /* the size of buffer filled by QEMU. */ + uint32_t len; + uint32_t func_ret_status; /* return status code. */ + uint8_t fit[]; /* the FIT data. */ +} QEMU_PACKED; +typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; +QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); + +static void +nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) +{ + NvdimmDsmFunc0Out func0 = { + .len = cpu_to_le32(sizeof(func0)), + .supported_func = cpu_to_le32(supported_func), + }; + cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); +} + +static void +nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) +{ + NvdimmDsmFuncNoPayloadOut out = { + .len = cpu_to_le32(sizeof(out)), + .func_ret_status = cpu_to_le32(func_ret_status), + }; + cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); +} + +#define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ +#define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ +#define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ +#define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ +#define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ + +#define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 + +/* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ +static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, + hwaddr dsm_mem_addr) +{ + NvdimmFitBuffer *fit_buf = &state->fit_buf; + NvdimmFuncReadFITIn *read_fit; + NvdimmFuncReadFITOut *read_fit_out; + GArray *fit; + uint32_t read_len = 0, func_ret_status; + int size; + + read_fit = (NvdimmFuncReadFITIn *)in->arg3; + read_fit->offset = le32_to_cpu(read_fit->offset); + + fit = fit_buf->fit; + + trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len, + fit_buf->dirty ? "Yes" : "No"); + + if (read_fit->offset > fit->len) { + func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; + goto exit; + } + + /* It is the first time to read FIT. */ + if (!read_fit->offset) { + fit_buf->dirty = false; + } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ + func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; + goto exit; + } + + func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; + read_len = MIN(fit->len - read_fit->offset, + NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); + +exit: + size = sizeof(NvdimmFuncReadFITOut) + read_len; + read_fit_out = g_malloc(size); + + read_fit_out->len = cpu_to_le32(size); + read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); + memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); + + cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); + + g_free(read_fit_out); +} + +static void +nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, + NvdimmDsmIn *in, hwaddr dsm_mem_addr) +{ + switch (in->function) { + case 0x0: + nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); + return; + case 0x1 /* Read FIT */: + nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); + return; + } + + nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); +} + +static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) +{ + /* + * function 0 is called to inquire which functions are supported by + * OSPM + */ + if (!in->function) { + nvdimm_dsm_function0(0 /* No function supported other than + function 0 */, dsm_mem_addr); + return; + } + + /* No function except function 0 is supported yet. */ + nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); +} + +/* + * the max transfer size is the max size transferred by both a + * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' + * function. + */ +static uint32_t nvdimm_get_max_xfer_label_size(void) +{ + uint32_t max_get_size, max_set_size, dsm_memory_size; + + dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; + + /* + * the max data ACPI can read one time which is transferred by + * the response of 'Get Namespace Label Data' function. + */ + max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); + + /* + * the max data ACPI can write one time which is transferred by + * 'Set Namespace Label Data' function. + */ + max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - + sizeof(NvdimmFuncSetLabelDataIn); + + return MIN(max_get_size, max_set_size); +} + +/* + * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). + * + * It gets the size of Namespace Label data area and the max data size + * that Get/Set Namespace Label Data functions can transfer. + */ +static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) +{ + NvdimmFuncGetLabelSizeOut label_size_out = { + .len = cpu_to_le32(sizeof(label_size_out)), + }; + uint32_t label_size, mxfer; + + label_size = nvdimm->label_size; + mxfer = nvdimm_get_max_xfer_label_size(); + + trace_acpi_nvdimm_label_info(label_size, mxfer); + + label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); + label_size_out.label_size = cpu_to_le32(label_size); + label_size_out.max_xfer = cpu_to_le32(mxfer); + + cpu_physical_memory_write(dsm_mem_addr, &label_size_out, + sizeof(label_size_out)); +} + +static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, + uint32_t offset, uint32_t length) +{ + uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; + + if (offset + length < offset) { + trace_acpi_nvdimm_label_overflow(offset, length); + return ret; + } + + if (nvdimm->label_size < offset + length) { + trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size); + return ret; + } + + if (length > nvdimm_get_max_xfer_label_size()) { + trace_acpi_nvdimm_label_xfer_exceed(length, + nvdimm_get_max_xfer_label_size()); + return ret; + } + + return NVDIMM_DSM_RET_STATUS_SUCCESS; +} + +/* + * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). + */ +static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, + hwaddr dsm_mem_addr) +{ + NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); + NvdimmFuncGetLabelDataIn *get_label_data; + NvdimmFuncGetLabelDataOut *get_label_data_out; + uint32_t status; + int size; + + get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; + get_label_data->offset = le32_to_cpu(get_label_data->offset); + get_label_data->length = le32_to_cpu(get_label_data->length); + + trace_acpi_nvdimm_read_label(get_label_data->offset, + get_label_data->length); + + status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, + get_label_data->length); + if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { + nvdimm_dsm_no_payload(status, dsm_mem_addr); + return; + } + + size = sizeof(*get_label_data_out) + get_label_data->length; + assert(size <= NVDIMM_DSM_MEMORY_SIZE); + get_label_data_out = g_malloc(size); + + get_label_data_out->len = cpu_to_le32(size); + get_label_data_out->func_ret_status = + cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); + nvc->read_label_data(nvdimm, get_label_data_out->out_buf, + get_label_data->length, get_label_data->offset); + + cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); + g_free(get_label_data_out); +} + +/* + * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). + */ +static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, + hwaddr dsm_mem_addr) +{ + NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); + NvdimmFuncSetLabelDataIn *set_label_data; + uint32_t status; + + set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; + + set_label_data->offset = le32_to_cpu(set_label_data->offset); + set_label_data->length = le32_to_cpu(set_label_data->length); + + trace_acpi_nvdimm_write_label(set_label_data->offset, + set_label_data->length); + + status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, + set_label_data->length); + if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { + nvdimm_dsm_no_payload(status, dsm_mem_addr); + return; + } + + assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + + set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); + + nvc->write_label_data(nvdimm, set_label_data->in_buf, + set_label_data->length, set_label_data->offset); + nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); +} + +static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) +{ + NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); + + /* See the comments in nvdimm_dsm_root(). */ + if (!in->function) { + uint32_t supported_func = 0; + + if (nvdimm && nvdimm->label_size) { + supported_func |= 0x1 /* Bit 0 indicates whether there is + support for any functions other + than function 0. */ | + 1 << 4 /* Get Namespace Label Size */ | + 1 << 5 /* Get Namespace Label Data */ | + 1 << 6 /* Set Namespace Label Data */; + } + nvdimm_dsm_function0(supported_func, dsm_mem_addr); + return; + } + + if (!nvdimm) { + nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, + dsm_mem_addr); + return; + } + + /* Encode DSM function according to DSM Spec Rev1. */ + switch (in->function) { + case 4 /* Get Namespace Label Size */: + if (nvdimm->label_size) { + nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); + return; + } + break; + case 5 /* Get Namespace Label Data */: + if (nvdimm->label_size) { + nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); + return; + } + break; + case 0x6 /* Set Namespace Label Data */: + if (nvdimm->label_size) { + nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); + return; + } + break; + } + + nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); +} + +static uint64_t +nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) +{ + trace_acpi_nvdimm_read_io_port(); + return 0; +} + +static void +nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) +{ + NVDIMMState *state = opaque; + NvdimmDsmIn *in; + hwaddr dsm_mem_addr = val; + + trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr); + + /* + * The DSM memory is mapped to guest address space so an evil guest + * can change its content while we are doing DSM emulation. Avoid + * this by copying DSM memory to QEMU local memory. + */ + in = g_new(NvdimmDsmIn, 1); + cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); + + in->revision = le32_to_cpu(in->revision); + in->function = le32_to_cpu(in->function); + in->handle = le32_to_cpu(in->handle); + + trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function); + + if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { + trace_acpi_nvdimm_invalid_revision(in->revision); + nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); + goto exit; + } + + if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { + nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); + goto exit; + } + + /* Handle 0 is reserved for NVDIMM Root Device. */ + if (!in->handle) { + nvdimm_dsm_root(in, dsm_mem_addr); + goto exit; + } + + nvdimm_dsm_device(in, dsm_mem_addr); + +exit: + g_free(in); +} + +static const MemoryRegionOps nvdimm_dsm_ops = { + .read = nvdimm_dsm_read, + .write = nvdimm_dsm_write, + .endianness = DEVICE_LITTLE_ENDIAN, + .valid = { + .min_access_size = 4, + .max_access_size = 4, + }, +}; + +void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) +{ + if (dev->hotplugged) { + acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); + } +} + +void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, + struct AcpiGenericAddress dsm_io, + FWCfgState *fw_cfg, Object *owner) +{ + state->dsm_io = dsm_io; + memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, + "nvdimm-acpi-io", dsm_io.bit_width >> 3); + memory_region_add_subregion(io, dsm_io.address, &state->io_mr); + + state->dsm_mem = g_array_new(false, true /* clear */, 1); + acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); + fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, + state->dsm_mem->len); + + nvdimm_init_fit_buffer(&state->fit_buf); +} + +#define NVDIMM_COMMON_DSM "NCAL" +#define NVDIMM_ACPI_MEM_ADDR "MEMA" + +#define NVDIMM_DSM_MEMORY "NRAM" +#define NVDIMM_DSM_IOPORT "NPIO" + +#define NVDIMM_DSM_NOTIFY "NTFI" +#define NVDIMM_DSM_HANDLE "HDLE" +#define NVDIMM_DSM_REVISION "REVS" +#define NVDIMM_DSM_FUNCTION "FUNC" +#define NVDIMM_DSM_ARG3 "FARG" + +#define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" +#define NVDIMM_DSM_OUT_BUF "ODAT" + +#define NVDIMM_DSM_RFIT_STATUS "RSTA" + +#define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" +#define NVDIMM_DEVICE_DSM_UUID "4309AC30-0D11-11E4-9191-0800200C9A66" + +static void nvdimm_build_common_dsm(Aml *dev, + NVDIMMState *nvdimm_state) +{ + Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; + Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; + Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; + Aml *whilectx, *offset; + uint8_t byte_list[1]; + AmlRegionSpace rs; + + method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); + uuid = aml_arg(0); + function = aml_arg(2); + handle = aml_arg(4); + dsm_mem = aml_local(6); + dsm_out_buf = aml_local(7); + + aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); + + if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) { + rs = AML_SYSTEM_IO; + } else { + rs = AML_SYSTEM_MEMORY; + } + + /* map DSM memory and IO into ACPI namespace. */ + aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs, + aml_int(nvdimm_state->dsm_io.address), + nvdimm_state->dsm_io.bit_width >> 3)); + aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, + AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); + + /* + * DSM notifier: + * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to + * emulate the access. + * + * It is the IO port so that accessing them will cause VM-exit, the + * control will be transferred to QEMU. + */ + field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, + AML_PRESERVE); + aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, + nvdimm_state->dsm_io.bit_width)); + aml_append(method, field); + + /* + * DSM input: + * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call + * happens on NVDIMM Root Device. + * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. + * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. + * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package + * containing function-specific arguments. + * + * They are RAM mapping on host so that these accesses never cause + * VM-EXIT. + */ + field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, + AML_PRESERVE); + aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, + sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); + aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, + sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); + aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, + sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); + aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, + (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); + aml_append(method, field); + + /* + * DSM output: + * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. + * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. + * + * Since the page is reused by both input and out, the input data + * will be lost after storing new result into ODAT so we should fetch + * all the input data before writing the result. + */ + field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, + AML_PRESERVE); + aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, + sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); + aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, + (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); + aml_append(method, field); + + /* + * do not support any method if DSM memory address has not been + * patched. + */ + unpatched = aml_equal(dsm_mem, aml_int(0x0)); + + expected_uuid = aml_local(0); + + ifctx = aml_if(aml_equal(handle, aml_int(0x0))); + aml_append(ifctx, aml_store( + aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") + /* UUID for NVDIMM Root Device */, expected_uuid)); + aml_append(method, ifctx); + elsectx = aml_else(); + ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); + aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID + /* UUID for QEMU internal use */), expected_uuid)); + aml_append(elsectx, ifctx); + elsectx2 = aml_else(); + aml_append(elsectx2, aml_store(aml_touuid(NVDIMM_DEVICE_DSM_UUID) + /* UUID for NVDIMM Devices */, expected_uuid)); + aml_append(elsectx, elsectx2); + aml_append(method, elsectx); + + uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); + + unsupport = aml_if(aml_lor(unpatched, uuid_invalid)); + + /* + * function 0 is called to inquire what functions are supported by + * OSPM + */ + ifctx = aml_if(aml_equal(function, aml_int(0))); + byte_list[0] = 0 /* No function Supported */; + aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); + aml_append(unsupport, ifctx); + + /* No function is supported yet. */ + byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; + aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); + aml_append(method, unsupport); + + /* + * The HDLE indicates the DSM function is issued from which device, + * it reserves 0 for root device and is the handle for NVDIMM devices. + * See the comments in nvdimm_slot_to_handle(). + */ + aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); + aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); + aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); + + /* + * The fourth parameter (Arg3) of _DSM is a package which contains + * a buffer, the layout of the buffer is specified by UUID (Arg0), + * Revision ID (Arg1) and Function Index (Arg2) which are documented + * in the DSM Spec. + */ + pckg = aml_arg(3); + ifctx = aml_if(aml_land(aml_equal(aml_object_type(pckg), + aml_int(4 /* Package */)) /* It is a Package? */, + aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */)); + + pckg_index = aml_local(2); + pckg_buf = aml_local(3); + aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); + aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); + aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); + aml_append(method, ifctx); + + /* + * tell QEMU about the real address of DSM memory, then QEMU + * gets the control and fills the result in DSM memory. + */ + aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); + + dsm_out_buf_size = aml_local(1); + /* RLEN is not included in the payload returned to guest. */ + aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), + aml_int(4), dsm_out_buf_size)); + + /* + * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if + * the Buffer Field <= to the size of an Integer (in bits), it will + * be treated as an integer. Moreover, the integer size depends on + * DSDT tables revision number. If revision number is < 2, integer + * size is 32 bits, otherwise it is 64 bits. + * Because of this CreateField() canot be used if RLEN < Integer Size. + * + * Also please note that APCI ASL operator SizeOf() doesn't support + * Integer and there isn't any other way to figure out the Integer + * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes, + * build dsm_out_buf byte by byte. + */ + ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8))); + offset = aml_local(2); + aml_append(ifctx, aml_store(aml_int(0), offset)); + aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL))); + aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf)); + + whilectx = aml_while(aml_lless(offset, dsm_out_buf_size)); + /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */ + aml_append(whilectx, aml_store(aml_derefof(aml_index( + aml_name(NVDIMM_DSM_OUT_BUF), offset)), + aml_index(aml_name("TBUF"), aml_int(0)))); + aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"), + dsm_out_buf)); + aml_append(whilectx, aml_increment(offset)); + aml_append(ifctx, whilectx); + + aml_append(ifctx, aml_return(dsm_out_buf)); + aml_append(method, ifctx); + + /* If RLEN >= Integer size, just use CreateField() operator */ + aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), + dsm_out_buf_size)); + aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), + aml_int(0), dsm_out_buf_size, "OBUF")); + aml_append(method, aml_return(aml_name("OBUF"))); + + aml_append(dev, method); +} + +static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) +{ + Aml *method; + + method = aml_method("_DSM", 4, AML_NOTSERIALIZED); + aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), + aml_arg(1), aml_arg(2), aml_arg(3), + aml_int(handle)))); + aml_append(dev, method); +} + +static void nvdimm_build_fit(Aml *dev) +{ + Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; + Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; + + buf = aml_local(0); + buf_size = aml_local(1); + fit = aml_local(2); + + aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); + + /* build helper function, RFIT. */ + method = aml_method("RFIT", 1, AML_SERIALIZED); + aml_append(method, aml_name_decl("OFST", aml_int(0))); + + /* prepare input package. */ + pkg = aml_package(1); + aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); + aml_append(pkg, aml_name("OFST")); + + /* call Read_FIT function. */ + call_result = aml_call5(NVDIMM_COMMON_DSM, + aml_touuid(NVDIMM_QEMU_RSVD_UUID), + aml_int(1) /* Revision 1 */, + aml_int(0x1) /* Read FIT */, + pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); + aml_append(method, aml_store(call_result, buf)); + + /* handle _DSM result. */ + aml_append(method, aml_create_dword_field(buf, + aml_int(0) /* offset at byte 0 */, "STAU")); + + aml_append(method, aml_store(aml_name("STAU"), + aml_name(NVDIMM_DSM_RFIT_STATUS))); + + /* if something is wrong during _DSM. */ + ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), + aml_name("STAU")); + ifctx = aml_if(aml_lnot(ifcond)); + aml_append(ifctx, aml_return(aml_buffer(0, NULL))); + aml_append(method, ifctx); + + aml_append(method, aml_store(aml_sizeof(buf), buf_size)); + aml_append(method, aml_subtract(buf_size, + aml_int(4) /* the size of "STAU" */, + buf_size)); + + /* if we read the end of fit. */ + ifctx = aml_if(aml_equal(buf_size, aml_int(0))); + aml_append(ifctx, aml_return(aml_buffer(0, NULL))); + aml_append(method, ifctx); + + aml_append(method, aml_create_field(buf, + aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ + aml_shiftleft(buf_size, aml_int(3)), "BUFF")); + aml_append(method, aml_return(aml_name("BUFF"))); + aml_append(dev, method); + + /* build _FIT. */ + method = aml_method("_FIT", 0, AML_SERIALIZED); + offset = aml_local(3); + + aml_append(method, aml_store(aml_buffer(0, NULL), fit)); + aml_append(method, aml_store(aml_int(0), offset)); + + whilectx = aml_while(aml_int(1)); + aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); + aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); + + /* + * if fit buffer was changed during RFIT, read from the beginning + * again. + */ + ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), + aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); + aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); + aml_append(ifctx, aml_store(aml_int(0), offset)); + aml_append(whilectx, ifctx); + + elsectx = aml_else(); + + /* finish fit read if no data is read out. */ + ifctx = aml_if(aml_equal(buf_size, aml_int(0))); + aml_append(ifctx, aml_return(fit)); + aml_append(elsectx, ifctx); + + /* update the offset. */ + aml_append(elsectx, aml_add(offset, buf_size, offset)); + /* append the data we read out to the fit buffer. */ + aml_append(elsectx, aml_concatenate(fit, buf, fit)); + aml_append(whilectx, elsectx); + aml_append(method, whilectx); + + aml_append(dev, method); +} + +static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) +{ + uint32_t slot; + Aml *method, *pkg, *field, *com_call; + + for (slot = 0; slot < ram_slots; slot++) { + uint32_t handle = nvdimm_slot_to_handle(slot); + Aml *nvdimm_dev; + + nvdimm_dev = aml_device("NV%02X", slot); + + /* + * ACPI 6.0: 9.20 NVDIMM Devices: + * + * _ADR object that is used to supply OSPM with unique address + * of the NVDIMM device. This is done by returning the NFIT Device + * handle that is used to identify the associated entries in ACPI + * table NFIT or _FIT. + */ + aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); + + /* + * ACPI v6.4: Section 6.5.10 NVDIMM Label Methods + */ + /* _LSI */ + method = aml_method("_LSI", 0, AML_SERIALIZED); + com_call = aml_call5(NVDIMM_COMMON_DSM, + aml_touuid(NVDIMM_DEVICE_DSM_UUID), + aml_int(1), aml_int(4), aml_int(0), + aml_int(handle)); + aml_append(method, aml_store(com_call, aml_local(0))); + + aml_append(method, aml_create_dword_field(aml_local(0), + aml_int(0), "STTS")); + aml_append(method, aml_create_dword_field(aml_local(0), aml_int(4), + "SLSA")); + aml_append(method, aml_create_dword_field(aml_local(0), aml_int(8), + "MAXT")); + + pkg = aml_package(3); + aml_append(pkg, aml_name("STTS")); + aml_append(pkg, aml_name("SLSA")); + aml_append(pkg, aml_name("MAXT")); + aml_append(method, aml_store(pkg, aml_local(1))); + aml_append(method, aml_return(aml_local(1))); + + aml_append(nvdimm_dev, method); + + /* _LSR */ + method = aml_method("_LSR", 2, AML_SERIALIZED); + aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL))); + + aml_append(method, aml_create_dword_field(aml_name("INPT"), + aml_int(0), "OFST")); + aml_append(method, aml_create_dword_field(aml_name("INPT"), + aml_int(4), "LEN")); + aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); + aml_append(method, aml_store(aml_arg(1), aml_name("LEN"))); + + pkg = aml_package(1); + aml_append(pkg, aml_name("INPT")); + aml_append(method, aml_store(pkg, aml_local(0))); + + com_call = aml_call5(NVDIMM_COMMON_DSM, + aml_touuid(NVDIMM_DEVICE_DSM_UUID), + aml_int(1), aml_int(5), aml_local(0), + aml_int(handle)); + aml_append(method, aml_store(com_call, aml_local(3))); + field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS"); + aml_append(method, field); + field = aml_create_field(aml_local(3), aml_int(32), + aml_shiftleft(aml_name("LEN"), aml_int(3)), + "LDAT"); + aml_append(method, field); + aml_append(method, aml_name_decl("LSA", aml_buffer(0, NULL))); + aml_append(method, aml_to_buffer(aml_name("LDAT"), aml_name("LSA"))); + + pkg = aml_package(2); + aml_append(pkg, aml_name("STTS")); + aml_append(pkg, aml_name("LSA")); + + aml_append(method, aml_store(pkg, aml_local(1))); + aml_append(method, aml_return(aml_local(1))); + + aml_append(nvdimm_dev, method); + + /* _LSW */ + method = aml_method("_LSW", 3, AML_SERIALIZED); + aml_append(method, aml_store(aml_arg(2), aml_local(2))); + aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL))); + field = aml_create_dword_field(aml_name("INPT"), + aml_int(0), "OFST"); + aml_append(method, field); + field = aml_create_dword_field(aml_name("INPT"), + aml_int(4), "TLEN"); + aml_append(method, field); + aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); + aml_append(method, aml_store(aml_arg(1), aml_name("TLEN"))); + + aml_append(method, aml_concatenate(aml_name("INPT"), aml_local(2), + aml_name("INPT"))); + pkg = aml_package(1); + aml_append(pkg, aml_name("INPT")); + aml_append(method, aml_store(pkg, aml_local(0))); + com_call = aml_call5(NVDIMM_COMMON_DSM, + aml_touuid(NVDIMM_DEVICE_DSM_UUID), + aml_int(1), aml_int(6), aml_local(0), + aml_int(handle)); + aml_append(method, aml_store(com_call, aml_local(3))); + field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS"); + aml_append(method, field); + aml_append(method, aml_return(aml_name("STTS"))); + + aml_append(nvdimm_dev, method); + + nvdimm_build_device_dsm(nvdimm_dev, handle); + aml_append(root_dev, nvdimm_dev); + } +} + +static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, + BIOSLinker *linker, + NVDIMMState *nvdimm_state, + uint32_t ram_slots, const char *oem_id) +{ + int mem_addr_offset; + Aml *ssdt, *sb_scope, *dev; + AcpiTable table = { .sig = "SSDT", .rev = 1, + .oem_id = oem_id, .oem_table_id = "NVDIMM" }; + + acpi_add_table(table_offsets, table_data); + + acpi_table_begin(&table, table_data); + ssdt = init_aml_allocator(); + sb_scope = aml_scope("\\_SB"); + + dev = aml_device("NVDR"); + + /* + * ACPI 6.0: 9.20 NVDIMM Devices: + * + * The ACPI Name Space device uses _HID of ACPI0012 to identify the root + * NVDIMM interface device. Platform firmware is required to contain one + * such device in _SB scope if NVDIMMs support is exposed by platform to + * OSPM. + * For each NVDIMM present or intended to be supported by platform, + * platform firmware also exposes an ACPI Namespace Device under the + * root device. + */ + aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); + + nvdimm_build_common_dsm(dev, nvdimm_state); + + /* 0 is reserved for root device. */ + nvdimm_build_device_dsm(dev, 0); + nvdimm_build_fit(dev); + + nvdimm_build_nvdimm_devices(dev, ram_slots); + + aml_append(sb_scope, dev); + aml_append(ssdt, sb_scope); + + /* copy AML table into ACPI tables blob and patch header there */ + g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); + mem_addr_offset = build_append_named_dword(table_data, + NVDIMM_ACPI_MEM_ADDR); + + bios_linker_loader_alloc(linker, + NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem, + sizeof(NvdimmDsmIn), false /* high memory */); + bios_linker_loader_add_pointer(linker, + ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), + NVDIMM_DSM_MEM_FILE, 0); + free_aml_allocator(); + /* + * must be executed as the last so that pointer patching command above + * would be executed by guest before it recalculated checksum which were + * scheduled by acpi_table_end() + */ + acpi_table_end(linker, &table); +} + +void nvdimm_build_srat(GArray *table_data) +{ + GSList *device_list, *list = nvdimm_get_device_list(); + + for (device_list = list; device_list; device_list = device_list->next) { + DeviceState *dev = device_list->data; + Object *obj = OBJECT(dev); + uint64_t addr, size; + int node; + + node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort); + addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort); + size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort); + + build_srat_memory(table_data, addr, size, node, + MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE); + } + g_slist_free(list); +} + +void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, + BIOSLinker *linker, NVDIMMState *state, + uint32_t ram_slots, const char *oem_id, + const char *oem_table_id) +{ + GSList *device_list; + + /* no nvdimm device can be plugged. */ + if (!ram_slots) { + return; + } + + nvdimm_build_ssdt(table_offsets, table_data, linker, state, + ram_slots, oem_id); + + device_list = nvdimm_get_device_list(); + /* no NVDIMM device is plugged. */ + if (!device_list) { + return; + } + + nvdimm_build_nfit(state, table_offsets, table_data, linker, + oem_id, oem_table_id); + g_slist_free(device_list); +} |