diff options
author | Daniel Baumann <mail@daniel-baumann.ch> | 2025-06-06 10:05:23 +0000 |
---|---|---|
committer | Daniel Baumann <mail@daniel-baumann.ch> | 2025-06-06 10:05:23 +0000 |
commit | 755cc582a2473d06f3a2131d506d0311cc70e9f9 (patch) | |
tree | 3efb1ddb8d57bbb4539ac0d229b384871c57820f /hw/arm/virt.c | |
parent | Initial commit. (diff) | |
download | qemu-upstream.tar.xz qemu-upstream.zip |
Adding upstream version 1:7.2+dfsg.upstream/1%7.2+dfsgupstream
Signed-off-by: Daniel Baumann <mail@daniel-baumann.ch>
Diffstat (limited to 'hw/arm/virt.c')
-rw-r--r-- | hw/arm/virt.c | 3296 |
1 files changed, 3296 insertions, 0 deletions
diff --git a/hw/arm/virt.c b/hw/arm/virt.c new file mode 100644 index 00000000..b8713508 --- /dev/null +++ b/hw/arm/virt.c @@ -0,0 +1,3296 @@ +/* + * ARM mach-virt emulation + * + * Copyright (c) 2013 Linaro Limited + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2 or later, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program. If not, see <http://www.gnu.org/licenses/>. + * + * Emulate a virtual board which works by passing Linux all the information + * it needs about what devices are present via the device tree. + * There are some restrictions about what we can do here: + * + we can only present devices whose Linux drivers will work based + * purely on the device tree with no platform data at all + * + we want to present a very stripped-down minimalist platform, + * both because this reduces the security attack surface from the guest + * and also because it reduces our exposure to being broken when + * the kernel updates its device tree bindings and requires further + * information in a device binding that we aren't providing. + * This is essentially the same approach kvmtool uses. + */ + +#include "qemu/osdep.h" +#include "qemu/datadir.h" +#include "qemu/units.h" +#include "qemu/option.h" +#include "monitor/qdev.h" +#include "qapi/error.h" +#include "hw/sysbus.h" +#include "hw/arm/boot.h" +#include "hw/arm/primecell.h" +#include "hw/arm/virt.h" +#include "hw/block/flash.h" +#include "hw/vfio/vfio-calxeda-xgmac.h" +#include "hw/vfio/vfio-amd-xgbe.h" +#include "hw/display/ramfb.h" +#include "net/net.h" +#include "sysemu/device_tree.h" +#include "sysemu/numa.h" +#include "sysemu/runstate.h" +#include "sysemu/tpm.h" +#include "sysemu/kvm.h" +#include "sysemu/hvf.h" +#include "hw/loader.h" +#include "qapi/error.h" +#include "qemu/bitops.h" +#include "qemu/error-report.h" +#include "qemu/module.h" +#include "hw/pci-host/gpex.h" +#include "hw/virtio/virtio-pci.h" +#include "hw/core/sysbus-fdt.h" +#include "hw/platform-bus.h" +#include "hw/qdev-properties.h" +#include "hw/arm/fdt.h" +#include "hw/intc/arm_gic.h" +#include "hw/intc/arm_gicv3_common.h" +#include "hw/irq.h" +#include "kvm_arm.h" +#include "hw/firmware/smbios.h" +#include "qapi/visitor.h" +#include "qapi/qapi-visit-common.h" +#include "standard-headers/linux/input.h" +#include "hw/arm/smmuv3.h" +#include "hw/acpi/acpi.h" +#include "target/arm/internals.h" +#include "hw/mem/memory-device.h" +#include "hw/mem/pc-dimm.h" +#include "hw/mem/nvdimm.h" +#include "hw/acpi/generic_event_device.h" +#include "hw/virtio/virtio-mem-pci.h" +#include "hw/virtio/virtio-iommu.h" +#include "hw/char/pl011.h" +#include "qemu/guest-random.h" + +#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ + static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ + void *data) \ + { \ + MachineClass *mc = MACHINE_CLASS(oc); \ + virt_machine_##major##_##minor##_options(mc); \ + mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ + if (latest) { \ + mc->alias = "virt"; \ + } \ + } \ + static const TypeInfo machvirt_##major##_##minor##_info = { \ + .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ + .parent = TYPE_VIRT_MACHINE, \ + .class_init = virt_##major##_##minor##_class_init, \ + }; \ + static void machvirt_machine_##major##_##minor##_init(void) \ + { \ + type_register_static(&machvirt_##major##_##minor##_info); \ + } \ + type_init(machvirt_machine_##major##_##minor##_init); + +#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ + DEFINE_VIRT_MACHINE_LATEST(major, minor, true) +#define DEFINE_VIRT_MACHINE(major, minor) \ + DEFINE_VIRT_MACHINE_LATEST(major, minor, false) + + +/* Number of external interrupt lines to configure the GIC with */ +#define NUM_IRQS 256 + +#define PLATFORM_BUS_NUM_IRQS 64 + +/* Legacy RAM limit in GB (< version 4.0) */ +#define LEGACY_RAMLIMIT_GB 255 +#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) + +/* Addresses and sizes of our components. + * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. + * 128MB..256MB is used for miscellaneous device I/O. + * 256MB..1GB is reserved for possible future PCI support (ie where the + * PCI memory window will go if we add a PCI host controller). + * 1GB and up is RAM (which may happily spill over into the + * high memory region beyond 4GB). + * This represents a compromise between how much RAM can be given to + * a 32 bit VM and leaving space for expansion and in particular for PCI. + * Note that devices should generally be placed at multiples of 0x10000, + * to accommodate guests using 64K pages. + */ +static const MemMapEntry base_memmap[] = { + /* Space up to 0x8000000 is reserved for a boot ROM */ + [VIRT_FLASH] = { 0, 0x08000000 }, + [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, + /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ + [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, + [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, + [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, + [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, + [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, + /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ + [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, + /* This redistributor space allows up to 2*64kB*123 CPUs */ + [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, + [VIRT_UART] = { 0x09000000, 0x00001000 }, + [VIRT_RTC] = { 0x09010000, 0x00001000 }, + [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, + [VIRT_GPIO] = { 0x09030000, 0x00001000 }, + [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, + [VIRT_SMMU] = { 0x09050000, 0x00020000 }, + [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, + [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, + [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, + [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, + [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, + [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, + /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ + [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, + [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, + [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, + [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, + [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, + /* Actual RAM size depends on initial RAM and device memory settings */ + [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, +}; + +/* + * Highmem IO Regions: This memory map is floating, located after the RAM. + * Each MemMapEntry base (GPA) will be dynamically computed, depending on the + * top of the RAM, so that its base get the same alignment as the size, + * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is + * less than 256GiB of RAM, the floating area starts at the 256GiB mark. + * Note the extended_memmap is sized so that it eventually also includes the + * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last + * index of base_memmap). + */ +static MemMapEntry extended_memmap[] = { + /* Additional 64 MB redist region (can contain up to 512 redistributors) */ + [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, + [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, + /* Second PCIe window */ + [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, +}; + +static const int a15irqmap[] = { + [VIRT_UART] = 1, + [VIRT_RTC] = 2, + [VIRT_PCIE] = 3, /* ... to 6 */ + [VIRT_GPIO] = 7, + [VIRT_SECURE_UART] = 8, + [VIRT_ACPI_GED] = 9, + [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ + [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ + [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ + [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ +}; + +static const char *valid_cpus[] = { + ARM_CPU_TYPE_NAME("cortex-a7"), + ARM_CPU_TYPE_NAME("cortex-a15"), + ARM_CPU_TYPE_NAME("cortex-a35"), + ARM_CPU_TYPE_NAME("cortex-a53"), + ARM_CPU_TYPE_NAME("cortex-a57"), + ARM_CPU_TYPE_NAME("cortex-a72"), + ARM_CPU_TYPE_NAME("cortex-a76"), + ARM_CPU_TYPE_NAME("a64fx"), + ARM_CPU_TYPE_NAME("neoverse-n1"), + ARM_CPU_TYPE_NAME("host"), + ARM_CPU_TYPE_NAME("max"), +}; + +static bool cpu_type_valid(const char *cpu) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { + if (strcmp(cpu, valid_cpus[i]) == 0) { + return true; + } + } + return false; +} + +static void create_randomness(MachineState *ms, const char *node) +{ + struct { + uint64_t kaslr; + uint8_t rng[32]; + } seed; + + if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { + return; + } + qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); + qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); +} + +static void create_fdt(VirtMachineState *vms) +{ + MachineState *ms = MACHINE(vms); + int nb_numa_nodes = ms->numa_state->num_nodes; + void *fdt = create_device_tree(&vms->fdt_size); + + if (!fdt) { + error_report("create_device_tree() failed"); + exit(1); + } + + ms->fdt = fdt; + + /* Header */ + qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); + qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); + qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); + qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); + + /* /chosen must exist for load_dtb to fill in necessary properties later */ + qemu_fdt_add_subnode(fdt, "/chosen"); + if (vms->dtb_randomness) { + create_randomness(ms, "/chosen"); + } + + if (vms->secure) { + qemu_fdt_add_subnode(fdt, "/secure-chosen"); + if (vms->dtb_randomness) { + create_randomness(ms, "/secure-chosen"); + } + } + + /* Clock node, for the benefit of the UART. The kernel device tree + * binding documentation claims the PL011 node clock properties are + * optional but in practice if you omit them the kernel refuses to + * probe for the device. + */ + vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); + qemu_fdt_add_subnode(fdt, "/apb-pclk"); + qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); + qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); + qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); + qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", + "clk24mhz"); + qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); + + if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { + int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); + uint32_t *matrix = g_malloc0(size); + int idx, i, j; + + for (i = 0; i < nb_numa_nodes; i++) { + for (j = 0; j < nb_numa_nodes; j++) { + idx = (i * nb_numa_nodes + j) * 3; + matrix[idx + 0] = cpu_to_be32(i); + matrix[idx + 1] = cpu_to_be32(j); + matrix[idx + 2] = + cpu_to_be32(ms->numa_state->nodes[i].distance[j]); + } + } + + qemu_fdt_add_subnode(fdt, "/distance-map"); + qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", + "numa-distance-map-v1"); + qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", + matrix, size); + g_free(matrix); + } +} + +static void fdt_add_timer_nodes(const VirtMachineState *vms) +{ + /* On real hardware these interrupts are level-triggered. + * On KVM they were edge-triggered before host kernel version 4.4, + * and level-triggered afterwards. + * On emulated QEMU they are level-triggered. + * + * Getting the DTB info about them wrong is awkward for some + * guest kernels: + * pre-4.8 ignore the DT and leave the interrupt configured + * with whatever the GIC reset value (or the bootloader) left it at + * 4.8 before rc6 honour the incorrect data by programming it back + * into the GIC, causing problems + * 4.8rc6 and later ignore the DT and always write "level triggered" + * into the GIC + * + * For backwards-compatibility, virt-2.8 and earlier will continue + * to say these are edge-triggered, but later machines will report + * the correct information. + */ + ARMCPU *armcpu; + VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); + uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; + MachineState *ms = MACHINE(vms); + + if (vmc->claim_edge_triggered_timers) { + irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; + } + + if (vms->gic_version == VIRT_GIC_VERSION_2) { + irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, + GIC_FDT_IRQ_PPI_CPU_WIDTH, + (1 << MACHINE(vms)->smp.cpus) - 1); + } + + qemu_fdt_add_subnode(ms->fdt, "/timer"); + + armcpu = ARM_CPU(qemu_get_cpu(0)); + if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { + const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; + qemu_fdt_setprop(ms->fdt, "/timer", "compatible", + compat, sizeof(compat)); + } else { + qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", + "arm,armv7-timer"); + } + qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); + qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", + GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, + GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, + GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, + GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); +} + +static void fdt_add_cpu_nodes(const VirtMachineState *vms) +{ + int cpu; + int addr_cells = 1; + const MachineState *ms = MACHINE(vms); + const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); + int smp_cpus = ms->smp.cpus; + + /* + * See Linux Documentation/devicetree/bindings/arm/cpus.yaml + * On ARM v8 64-bit systems value should be set to 2, + * that corresponds to the MPIDR_EL1 register size. + * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs + * in the system, #address-cells can be set to 1, since + * MPIDR_EL1[63:32] bits are not used for CPUs + * identification. + * + * Here we actually don't know whether our system is 32- or 64-bit one. + * The simplest way to go is to examine affinity IDs of all our CPUs. If + * at least one of them has Aff3 populated, we set #address-cells to 2. + */ + for (cpu = 0; cpu < smp_cpus; cpu++) { + ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); + + if (armcpu->mp_affinity & ARM_AFF3_MASK) { + addr_cells = 2; + break; + } + } + + qemu_fdt_add_subnode(ms->fdt, "/cpus"); + qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); + qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); + + for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { + char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); + ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); + CPUState *cs = CPU(armcpu); + + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", + armcpu->dtb_compatible); + + if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { + qemu_fdt_setprop_string(ms->fdt, nodename, + "enable-method", "psci"); + } + + if (addr_cells == 2) { + qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", + armcpu->mp_affinity); + } else { + qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", + armcpu->mp_affinity); + } + + if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { + qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", + ms->possible_cpus->cpus[cs->cpu_index].props.node_id); + } + + if (!vmc->no_cpu_topology) { + qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", + qemu_fdt_alloc_phandle(ms->fdt)); + } + + g_free(nodename); + } + + if (!vmc->no_cpu_topology) { + /* + * Add vCPU topology description through fdt node cpu-map. + * + * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt + * In a SMP system, the hierarchy of CPUs can be defined through + * four entities that are used to describe the layout of CPUs in + * the system: socket/cluster/core/thread. + * + * A socket node represents the boundary of system physical package + * and its child nodes must be one or more cluster nodes. A system + * can contain several layers of clustering within a single physical + * package and cluster nodes can be contained in parent cluster nodes. + * + * Note: currently we only support one layer of clustering within + * each physical package. + */ + qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); + + for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { + char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); + char *map_path; + + if (ms->smp.threads > 1) { + map_path = g_strdup_printf( + "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", + cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), + (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, + (cpu / ms->smp.threads) % ms->smp.cores, + cpu % ms->smp.threads); + } else { + map_path = g_strdup_printf( + "/cpus/cpu-map/socket%d/cluster%d/core%d", + cpu / (ms->smp.clusters * ms->smp.cores), + (cpu / ms->smp.cores) % ms->smp.clusters, + cpu % ms->smp.cores); + } + qemu_fdt_add_path(ms->fdt, map_path); + qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); + + g_free(map_path); + g_free(cpu_path); + } + } +} + +static void fdt_add_its_gic_node(VirtMachineState *vms) +{ + char *nodename; + MachineState *ms = MACHINE(vms); + + vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); + nodename = g_strdup_printf("/intc/its@%" PRIx64, + vms->memmap[VIRT_GIC_ITS].base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", + "arm,gic-v3-its"); + qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, vms->memmap[VIRT_GIC_ITS].base, + 2, vms->memmap[VIRT_GIC_ITS].size); + qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); + g_free(nodename); +} + +static void fdt_add_v2m_gic_node(VirtMachineState *vms) +{ + MachineState *ms = MACHINE(vms); + char *nodename; + + nodename = g_strdup_printf("/intc/v2m@%" PRIx64, + vms->memmap[VIRT_GIC_V2M].base); + vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", + "arm,gic-v2m-frame"); + qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, vms->memmap[VIRT_GIC_V2M].base, + 2, vms->memmap[VIRT_GIC_V2M].size); + qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); + g_free(nodename); +} + +static void fdt_add_gic_node(VirtMachineState *vms) +{ + MachineState *ms = MACHINE(vms); + char *nodename; + + vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); + qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); + + nodename = g_strdup_printf("/intc@%" PRIx64, + vms->memmap[VIRT_GIC_DIST].base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); + qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); + qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); + if (vms->gic_version != VIRT_GIC_VERSION_2) { + int nb_redist_regions = virt_gicv3_redist_region_count(vms); + + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", + "arm,gic-v3"); + + qemu_fdt_setprop_cell(ms->fdt, nodename, + "#redistributor-regions", nb_redist_regions); + + if (nb_redist_regions == 1) { + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, vms->memmap[VIRT_GIC_DIST].base, + 2, vms->memmap[VIRT_GIC_DIST].size, + 2, vms->memmap[VIRT_GIC_REDIST].base, + 2, vms->memmap[VIRT_GIC_REDIST].size); + } else { + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, vms->memmap[VIRT_GIC_DIST].base, + 2, vms->memmap[VIRT_GIC_DIST].size, + 2, vms->memmap[VIRT_GIC_REDIST].base, + 2, vms->memmap[VIRT_GIC_REDIST].size, + 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, + 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); + } + + if (vms->virt) { + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", + GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, + GIC_FDT_IRQ_FLAGS_LEVEL_HI); + } + } else { + /* 'cortex-a15-gic' means 'GIC v2' */ + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", + "arm,cortex-a15-gic"); + if (!vms->virt) { + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, vms->memmap[VIRT_GIC_DIST].base, + 2, vms->memmap[VIRT_GIC_DIST].size, + 2, vms->memmap[VIRT_GIC_CPU].base, + 2, vms->memmap[VIRT_GIC_CPU].size); + } else { + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, vms->memmap[VIRT_GIC_DIST].base, + 2, vms->memmap[VIRT_GIC_DIST].size, + 2, vms->memmap[VIRT_GIC_CPU].base, + 2, vms->memmap[VIRT_GIC_CPU].size, + 2, vms->memmap[VIRT_GIC_HYP].base, + 2, vms->memmap[VIRT_GIC_HYP].size, + 2, vms->memmap[VIRT_GIC_VCPU].base, + 2, vms->memmap[VIRT_GIC_VCPU].size); + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", + GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, + GIC_FDT_IRQ_FLAGS_LEVEL_HI); + } + } + + qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); + g_free(nodename); +} + +static void fdt_add_pmu_nodes(const VirtMachineState *vms) +{ + ARMCPU *armcpu = ARM_CPU(first_cpu); + uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; + MachineState *ms = MACHINE(vms); + + if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { + assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); + return; + } + + if (vms->gic_version == VIRT_GIC_VERSION_2) { + irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, + GIC_FDT_IRQ_PPI_CPU_WIDTH, + (1 << MACHINE(vms)->smp.cpus) - 1); + } + + qemu_fdt_add_subnode(ms->fdt, "/pmu"); + if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { + const char compat[] = "arm,armv8-pmuv3"; + qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", + compat, sizeof(compat)); + qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", + GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); + } +} + +static inline DeviceState *create_acpi_ged(VirtMachineState *vms) +{ + DeviceState *dev; + MachineState *ms = MACHINE(vms); + int irq = vms->irqmap[VIRT_ACPI_GED]; + uint32_t event = ACPI_GED_PWR_DOWN_EVT; + + if (ms->ram_slots) { + event |= ACPI_GED_MEM_HOTPLUG_EVT; + } + + if (ms->nvdimms_state->is_enabled) { + event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; + } + + dev = qdev_new(TYPE_ACPI_GED); + qdev_prop_set_uint32(dev, "ged-event", event); + + sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); + sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); + sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); + + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + + return dev; +} + +static void create_its(VirtMachineState *vms) +{ + const char *itsclass = its_class_name(); + DeviceState *dev; + + if (!strcmp(itsclass, "arm-gicv3-its")) { + if (!vms->tcg_its) { + itsclass = NULL; + } + } + + if (!itsclass) { + /* Do nothing if not supported */ + return; + } + + dev = qdev_new(itsclass); + + object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), + &error_abort); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); + + fdt_add_its_gic_node(vms); + vms->msi_controller = VIRT_MSI_CTRL_ITS; +} + +static void create_v2m(VirtMachineState *vms) +{ + int i; + int irq = vms->irqmap[VIRT_GIC_V2M]; + DeviceState *dev; + + dev = qdev_new("arm-gicv2m"); + sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); + qdev_prop_set_uint32(dev, "base-spi", irq); + qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + + for (i = 0; i < NUM_GICV2M_SPIS; i++) { + sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, + qdev_get_gpio_in(vms->gic, irq + i)); + } + + fdt_add_v2m_gic_node(vms); + vms->msi_controller = VIRT_MSI_CTRL_GICV2M; +} + +static void create_gic(VirtMachineState *vms, MemoryRegion *mem) +{ + MachineState *ms = MACHINE(vms); + /* We create a standalone GIC */ + SysBusDevice *gicbusdev; + const char *gictype; + int i; + unsigned int smp_cpus = ms->smp.cpus; + uint32_t nb_redist_regions = 0; + int revision; + + if (vms->gic_version == VIRT_GIC_VERSION_2) { + gictype = gic_class_name(); + } else { + gictype = gicv3_class_name(); + } + + switch (vms->gic_version) { + case VIRT_GIC_VERSION_2: + revision = 2; + break; + case VIRT_GIC_VERSION_3: + revision = 3; + break; + case VIRT_GIC_VERSION_4: + revision = 4; + break; + default: + g_assert_not_reached(); + } + vms->gic = qdev_new(gictype); + qdev_prop_set_uint32(vms->gic, "revision", revision); + qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); + /* Note that the num-irq property counts both internal and external + * interrupts; there are always 32 of the former (mandated by GIC spec). + */ + qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); + if (!kvm_irqchip_in_kernel()) { + qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); + } + + if (vms->gic_version != VIRT_GIC_VERSION_2) { + uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); + uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); + + nb_redist_regions = virt_gicv3_redist_region_count(vms); + + qdev_prop_set_uint32(vms->gic, "len-redist-region-count", + nb_redist_regions); + qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); + + if (!kvm_irqchip_in_kernel()) { + if (vms->tcg_its) { + object_property_set_link(OBJECT(vms->gic), "sysmem", + OBJECT(mem), &error_fatal); + qdev_prop_set_bit(vms->gic, "has-lpi", true); + } + } + + if (nb_redist_regions == 2) { + uint32_t redist1_capacity = + virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); + + qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", + MIN(smp_cpus - redist0_count, redist1_capacity)); + } + } else { + if (!kvm_irqchip_in_kernel()) { + qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", + vms->virt); + } + } + gicbusdev = SYS_BUS_DEVICE(vms->gic); + sysbus_realize_and_unref(gicbusdev, &error_fatal); + sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); + if (vms->gic_version != VIRT_GIC_VERSION_2) { + sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); + if (nb_redist_regions == 2) { + sysbus_mmio_map(gicbusdev, 2, + vms->memmap[VIRT_HIGH_GIC_REDIST2].base); + } + } else { + sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); + if (vms->virt) { + sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); + sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); + } + } + + /* Wire the outputs from each CPU's generic timer and the GICv3 + * maintenance interrupt signal to the appropriate GIC PPI inputs, + * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. + */ + for (i = 0; i < smp_cpus; i++) { + DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); + int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; + int irq; + /* Mapping from the output timer irq lines from the CPU to the + * GIC PPI inputs we use for the virt board. + */ + const int timer_irq[] = { + [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, + [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, + [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, + [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, + }; + + for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { + qdev_connect_gpio_out(cpudev, irq, + qdev_get_gpio_in(vms->gic, + ppibase + timer_irq[irq])); + } + + if (vms->gic_version != VIRT_GIC_VERSION_2) { + qemu_irq irq = qdev_get_gpio_in(vms->gic, + ppibase + ARCH_GIC_MAINT_IRQ); + qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", + 0, irq); + } else if (vms->virt) { + qemu_irq irq = qdev_get_gpio_in(vms->gic, + ppibase + ARCH_GIC_MAINT_IRQ); + sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); + } + + qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, + qdev_get_gpio_in(vms->gic, ppibase + + VIRTUAL_PMU_IRQ)); + + sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); + sysbus_connect_irq(gicbusdev, i + smp_cpus, + qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); + sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, + qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); + sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, + qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); + } + + fdt_add_gic_node(vms); + + if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { + create_its(vms); + } else if (vms->gic_version == VIRT_GIC_VERSION_2) { + create_v2m(vms); + } +} + +static void create_uart(const VirtMachineState *vms, int uart, + MemoryRegion *mem, Chardev *chr) +{ + char *nodename; + hwaddr base = vms->memmap[uart].base; + hwaddr size = vms->memmap[uart].size; + int irq = vms->irqmap[uart]; + const char compat[] = "arm,pl011\0arm,primecell"; + const char clocknames[] = "uartclk\0apb_pclk"; + DeviceState *dev = qdev_new(TYPE_PL011); + SysBusDevice *s = SYS_BUS_DEVICE(dev); + MachineState *ms = MACHINE(vms); + + qdev_prop_set_chr(dev, "chardev", chr); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + memory_region_add_subregion(mem, base, + sysbus_mmio_get_region(s, 0)); + sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); + + nodename = g_strdup_printf("/pl011@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + /* Note that we can't use setprop_string because of the embedded NUL */ + qemu_fdt_setprop(ms->fdt, nodename, "compatible", + compat, sizeof(compat)); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, base, 2, size); + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", + GIC_FDT_IRQ_TYPE_SPI, irq, + GIC_FDT_IRQ_FLAGS_LEVEL_HI); + qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", + vms->clock_phandle, vms->clock_phandle); + qemu_fdt_setprop(ms->fdt, nodename, "clock-names", + clocknames, sizeof(clocknames)); + + if (uart == VIRT_UART) { + qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); + } else { + /* Mark as not usable by the normal world */ + qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); + qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); + + qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", + nodename); + } + + g_free(nodename); +} + +static void create_rtc(const VirtMachineState *vms) +{ + char *nodename; + hwaddr base = vms->memmap[VIRT_RTC].base; + hwaddr size = vms->memmap[VIRT_RTC].size; + int irq = vms->irqmap[VIRT_RTC]; + const char compat[] = "arm,pl031\0arm,primecell"; + MachineState *ms = MACHINE(vms); + + sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); + + nodename = g_strdup_printf("/pl031@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, base, 2, size); + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", + GIC_FDT_IRQ_TYPE_SPI, irq, + GIC_FDT_IRQ_FLAGS_LEVEL_HI); + qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); + qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); + g_free(nodename); +} + +static DeviceState *gpio_key_dev; +static void virt_powerdown_req(Notifier *n, void *opaque) +{ + VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); + + if (s->acpi_dev) { + acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); + } else { + /* use gpio Pin 3 for power button event */ + qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); + } +} + +static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, + uint32_t phandle) +{ + gpio_key_dev = sysbus_create_simple("gpio-key", -1, + qdev_get_gpio_in(pl061_dev, 3)); + + qemu_fdt_add_subnode(fdt, "/gpio-keys"); + qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); + + qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); + qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", + "label", "GPIO Key Poweroff"); + qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", + KEY_POWER); + qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", + "gpios", phandle, 3, 0); +} + +#define SECURE_GPIO_POWEROFF 0 +#define SECURE_GPIO_RESET 1 + +static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, + uint32_t phandle) +{ + DeviceState *gpio_pwr_dev; + + /* gpio-pwr */ + gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); + + /* connect secure pl061 to gpio-pwr */ + qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, + qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); + qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, + qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); + + qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); + qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", + "gpio-poweroff"); + qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", + "gpios", phandle, SECURE_GPIO_POWEROFF, 0); + qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); + qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", + "okay"); + + qemu_fdt_add_subnode(fdt, "/gpio-restart"); + qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", + "gpio-restart"); + qemu_fdt_setprop_cells(fdt, "/gpio-restart", + "gpios", phandle, SECURE_GPIO_RESET, 0); + qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); + qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", + "okay"); +} + +static void create_gpio_devices(const VirtMachineState *vms, int gpio, + MemoryRegion *mem) +{ + char *nodename; + DeviceState *pl061_dev; + hwaddr base = vms->memmap[gpio].base; + hwaddr size = vms->memmap[gpio].size; + int irq = vms->irqmap[gpio]; + const char compat[] = "arm,pl061\0arm,primecell"; + SysBusDevice *s; + MachineState *ms = MACHINE(vms); + + pl061_dev = qdev_new("pl061"); + /* Pull lines down to 0 if not driven by the PL061 */ + qdev_prop_set_uint32(pl061_dev, "pullups", 0); + qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); + s = SYS_BUS_DEVICE(pl061_dev); + sysbus_realize_and_unref(s, &error_fatal); + memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); + sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); + + uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); + nodename = g_strdup_printf("/pl061@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, base, 2, size); + qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); + qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", + GIC_FDT_IRQ_TYPE_SPI, irq, + GIC_FDT_IRQ_FLAGS_LEVEL_HI); + qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); + qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); + qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); + + if (gpio != VIRT_GPIO) { + /* Mark as not usable by the normal world */ + qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); + qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); + } + g_free(nodename); + + /* Child gpio devices */ + if (gpio == VIRT_GPIO) { + create_gpio_keys(ms->fdt, pl061_dev, phandle); + } else { + create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); + } +} + +static void create_virtio_devices(const VirtMachineState *vms) +{ + int i; + hwaddr size = vms->memmap[VIRT_MMIO].size; + MachineState *ms = MACHINE(vms); + + /* We create the transports in forwards order. Since qbus_realize() + * prepends (not appends) new child buses, the incrementing loop below will + * create a list of virtio-mmio buses with decreasing base addresses. + * + * When a -device option is processed from the command line, + * qbus_find_recursive() picks the next free virtio-mmio bus in forwards + * order. The upshot is that -device options in increasing command line + * order are mapped to virtio-mmio buses with decreasing base addresses. + * + * When this code was originally written, that arrangement ensured that the + * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to + * the first -device on the command line. (The end-to-end order is a + * function of this loop, qbus_realize(), qbus_find_recursive(), and the + * guest kernel's name-to-address assignment strategy.) + * + * Meanwhile, the kernel's traversal seems to have been reversed; see eg. + * the message, if not necessarily the code, of commit 70161ff336. + * Therefore the loop now establishes the inverse of the original intent. + * + * Unfortunately, we can't counteract the kernel change by reversing the + * loop; it would break existing command lines. + * + * In any case, the kernel makes no guarantee about the stability of + * enumeration order of virtio devices (as demonstrated by it changing + * between kernel versions). For reliable and stable identification + * of disks users must use UUIDs or similar mechanisms. + */ + for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { + int irq = vms->irqmap[VIRT_MMIO] + i; + hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; + + sysbus_create_simple("virtio-mmio", base, + qdev_get_gpio_in(vms->gic, irq)); + } + + /* We add dtb nodes in reverse order so that they appear in the finished + * device tree lowest address first. + * + * Note that this mapping is independent of the loop above. The previous + * loop influences virtio device to virtio transport assignment, whereas + * this loop controls how virtio transports are laid out in the dtb. + */ + for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { + char *nodename; + int irq = vms->irqmap[VIRT_MMIO] + i; + hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; + + nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, + "compatible", "virtio,mmio"); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, base, 2, size); + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", + GIC_FDT_IRQ_TYPE_SPI, irq, + GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); + qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); + g_free(nodename); + } +} + +#define VIRT_FLASH_SECTOR_SIZE (256 * KiB) + +static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, + const char *name, + const char *alias_prop_name) +{ + /* + * Create a single flash device. We use the same parameters as + * the flash devices on the Versatile Express board. + */ + DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); + + qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); + qdev_prop_set_uint8(dev, "width", 4); + qdev_prop_set_uint8(dev, "device-width", 2); + qdev_prop_set_bit(dev, "big-endian", false); + qdev_prop_set_uint16(dev, "id0", 0x89); + qdev_prop_set_uint16(dev, "id1", 0x18); + qdev_prop_set_uint16(dev, "id2", 0x00); + qdev_prop_set_uint16(dev, "id3", 0x00); + qdev_prop_set_string(dev, "name", name); + object_property_add_child(OBJECT(vms), name, OBJECT(dev)); + object_property_add_alias(OBJECT(vms), alias_prop_name, + OBJECT(dev), "drive"); + return PFLASH_CFI01(dev); +} + +static void virt_flash_create(VirtMachineState *vms) +{ + vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); + vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); +} + +static void virt_flash_map1(PFlashCFI01 *flash, + hwaddr base, hwaddr size, + MemoryRegion *sysmem) +{ + DeviceState *dev = DEVICE(flash); + + assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); + assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); + qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + + memory_region_add_subregion(sysmem, base, + sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), + 0)); +} + +static void virt_flash_map(VirtMachineState *vms, + MemoryRegion *sysmem, + MemoryRegion *secure_sysmem) +{ + /* + * Map two flash devices to fill the VIRT_FLASH space in the memmap. + * sysmem is the system memory space. secure_sysmem is the secure view + * of the system, and the first flash device should be made visible only + * there. The second flash device is visible to both secure and nonsecure. + * If sysmem == secure_sysmem this means there is no separate Secure + * address space and both flash devices are generally visible. + */ + hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; + hwaddr flashbase = vms->memmap[VIRT_FLASH].base; + + virt_flash_map1(vms->flash[0], flashbase, flashsize, + secure_sysmem); + virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, + sysmem); +} + +static void virt_flash_fdt(VirtMachineState *vms, + MemoryRegion *sysmem, + MemoryRegion *secure_sysmem) +{ + hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; + hwaddr flashbase = vms->memmap[VIRT_FLASH].base; + MachineState *ms = MACHINE(vms); + char *nodename; + + if (sysmem == secure_sysmem) { + /* Report both flash devices as a single node in the DT */ + nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, flashbase, 2, flashsize, + 2, flashbase + flashsize, 2, flashsize); + qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); + g_free(nodename); + } else { + /* + * Report the devices as separate nodes so we can mark one as + * only visible to the secure world. + */ + nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, flashbase, 2, flashsize); + qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); + qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); + qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); + g_free(nodename); + + nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, flashbase + flashsize, 2, flashsize); + qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); + g_free(nodename); + } +} + +static bool virt_firmware_init(VirtMachineState *vms, + MemoryRegion *sysmem, + MemoryRegion *secure_sysmem) +{ + int i; + const char *bios_name; + BlockBackend *pflash_blk0; + + /* Map legacy -drive if=pflash to machine properties */ + for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { + pflash_cfi01_legacy_drive(vms->flash[i], + drive_get(IF_PFLASH, 0, i)); + } + + virt_flash_map(vms, sysmem, secure_sysmem); + + pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); + + bios_name = MACHINE(vms)->firmware; + if (bios_name) { + char *fname; + MemoryRegion *mr; + int image_size; + + if (pflash_blk0) { + error_report("The contents of the first flash device may be " + "specified with -bios or with -drive if=pflash... " + "but you cannot use both options at once"); + exit(1); + } + + /* Fall back to -bios */ + + fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); + if (!fname) { + error_report("Could not find ROM image '%s'", bios_name); + exit(1); + } + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); + image_size = load_image_mr(fname, mr); + g_free(fname); + if (image_size < 0) { + error_report("Could not load ROM image '%s'", bios_name); + exit(1); + } + } + + return pflash_blk0 || bios_name; +} + +static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) +{ + MachineState *ms = MACHINE(vms); + hwaddr base = vms->memmap[VIRT_FW_CFG].base; + hwaddr size = vms->memmap[VIRT_FW_CFG].size; + FWCfgState *fw_cfg; + char *nodename; + + fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); + fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); + + nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, + "compatible", "qemu,fw-cfg-mmio"); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, base, 2, size); + qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); + g_free(nodename); + return fw_cfg; +} + +static void create_pcie_irq_map(const MachineState *ms, + uint32_t gic_phandle, + int first_irq, const char *nodename) +{ + int devfn, pin; + uint32_t full_irq_map[4 * 4 * 10] = { 0 }; + uint32_t *irq_map = full_irq_map; + + for (devfn = 0; devfn <= 0x18; devfn += 0x8) { + for (pin = 0; pin < 4; pin++) { + int irq_type = GIC_FDT_IRQ_TYPE_SPI; + int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); + int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; + int i; + + uint32_t map[] = { + devfn << 8, 0, 0, /* devfn */ + pin + 1, /* PCI pin */ + gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ + + /* Convert map to big endian */ + for (i = 0; i < 10; i++) { + irq_map[i] = cpu_to_be32(map[i]); + } + irq_map += 10; + } + } + + qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", + full_irq_map, sizeof(full_irq_map)); + + qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", + cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ + 0, 0, + 0x7 /* PCI irq */); +} + +static void create_smmu(const VirtMachineState *vms, + PCIBus *bus) +{ + char *node; + const char compat[] = "arm,smmu-v3"; + int irq = vms->irqmap[VIRT_SMMU]; + int i; + hwaddr base = vms->memmap[VIRT_SMMU].base; + hwaddr size = vms->memmap[VIRT_SMMU].size; + const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; + DeviceState *dev; + MachineState *ms = MACHINE(vms); + + if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { + return; + } + + dev = qdev_new("arm-smmuv3"); + + object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), + &error_abort); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); + for (i = 0; i < NUM_SMMU_IRQS; i++) { + sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, + qdev_get_gpio_in(vms->gic, irq + i)); + } + + node = g_strdup_printf("/smmuv3@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, node); + qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); + qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); + + qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", + GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, + GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, + GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, + GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); + + qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, + sizeof(irq_names)); + + qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); + + qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); + + qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); + g_free(node); +} + +static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) +{ + const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; + uint16_t bdf = vms->virtio_iommu_bdf; + MachineState *ms = MACHINE(vms); + char *node; + + vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); + + node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, + PCI_SLOT(bdf), PCI_FUNC(bdf)); + qemu_fdt_add_subnode(ms->fdt, node); + qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); + qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", + 1, bdf << 8, 1, 0, 1, 0, + 1, 0, 1, 0); + + qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); + qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); + g_free(node); + + qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", + 0x0, vms->iommu_phandle, 0x0, bdf, + bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); +} + +static void create_pcie(VirtMachineState *vms) +{ + hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; + hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; + hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; + hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; + hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; + hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; + hwaddr base_ecam, size_ecam; + hwaddr base = base_mmio; + int nr_pcie_buses; + int irq = vms->irqmap[VIRT_PCIE]; + MemoryRegion *mmio_alias; + MemoryRegion *mmio_reg; + MemoryRegion *ecam_alias; + MemoryRegion *ecam_reg; + DeviceState *dev; + char *nodename; + int i, ecam_id; + PCIHostState *pci; + MachineState *ms = MACHINE(vms); + + dev = qdev_new(TYPE_GPEX_HOST); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + + ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); + base_ecam = vms->memmap[ecam_id].base; + size_ecam = vms->memmap[ecam_id].size; + nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; + /* Map only the first size_ecam bytes of ECAM space */ + ecam_alias = g_new0(MemoryRegion, 1); + ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); + memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", + ecam_reg, 0, size_ecam); + memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); + + /* Map the MMIO window into system address space so as to expose + * the section of PCI MMIO space which starts at the same base address + * (ie 1:1 mapping for that part of PCI MMIO space visible through + * the window). + */ + mmio_alias = g_new0(MemoryRegion, 1); + mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); + memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", + mmio_reg, base_mmio, size_mmio); + memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); + + if (vms->highmem_mmio) { + /* Map high MMIO space */ + MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); + + memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", + mmio_reg, base_mmio_high, size_mmio_high); + memory_region_add_subregion(get_system_memory(), base_mmio_high, + high_mmio_alias); + } + + /* Map IO port space */ + sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); + + for (i = 0; i < GPEX_NUM_IRQS; i++) { + sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, + qdev_get_gpio_in(vms->gic, irq + i)); + gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); + } + + pci = PCI_HOST_BRIDGE(dev); + pci->bypass_iommu = vms->default_bus_bypass_iommu; + vms->bus = pci->bus; + if (vms->bus) { + for (i = 0; i < nb_nics; i++) { + NICInfo *nd = &nd_table[i]; + + if (!nd->model) { + nd->model = g_strdup("virtio"); + } + + pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); + } + } + + nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, + "compatible", "pci-host-ecam-generic"); + qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); + qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); + qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); + qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, + nr_pcie_buses - 1); + qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); + + if (vms->msi_phandle) { + qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", + 0, vms->msi_phandle, 0, 0x10000); + } + + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", + 2, base_ecam, 2, size_ecam); + + if (vms->highmem_mmio) { + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", + 1, FDT_PCI_RANGE_IOPORT, 2, 0, + 2, base_pio, 2, size_pio, + 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, + 2, base_mmio, 2, size_mmio, + 1, FDT_PCI_RANGE_MMIO_64BIT, + 2, base_mmio_high, + 2, base_mmio_high, 2, size_mmio_high); + } else { + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", + 1, FDT_PCI_RANGE_IOPORT, 2, 0, + 2, base_pio, 2, size_pio, + 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, + 2, base_mmio, 2, size_mmio); + } + + qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); + create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); + + if (vms->iommu) { + vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); + + switch (vms->iommu) { + case VIRT_IOMMU_SMMUV3: + create_smmu(vms, vms->bus); + qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", + 0x0, vms->iommu_phandle, 0x0, 0x10000); + break; + default: + g_assert_not_reached(); + } + } +} + +static void create_platform_bus(VirtMachineState *vms) +{ + DeviceState *dev; + SysBusDevice *s; + int i; + MemoryRegion *sysmem = get_system_memory(); + + dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); + dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); + qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); + qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); + sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); + vms->platform_bus_dev = dev; + + s = SYS_BUS_DEVICE(dev); + for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { + int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; + sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); + } + + memory_region_add_subregion(sysmem, + vms->memmap[VIRT_PLATFORM_BUS].base, + sysbus_mmio_get_region(s, 0)); +} + +static void create_tag_ram(MemoryRegion *tag_sysmem, + hwaddr base, hwaddr size, + const char *name) +{ + MemoryRegion *tagram = g_new(MemoryRegion, 1); + + memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); + memory_region_add_subregion(tag_sysmem, base / 32, tagram); +} + +static void create_secure_ram(VirtMachineState *vms, + MemoryRegion *secure_sysmem, + MemoryRegion *secure_tag_sysmem) +{ + MemoryRegion *secram = g_new(MemoryRegion, 1); + char *nodename; + hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; + hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; + MachineState *ms = MACHINE(vms); + + memory_region_init_ram(secram, NULL, "virt.secure-ram", size, + &error_fatal); + memory_region_add_subregion(secure_sysmem, base, secram); + + nodename = g_strdup_printf("/secram@%" PRIx64, base); + qemu_fdt_add_subnode(ms->fdt, nodename); + qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); + qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); + qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); + qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); + + if (secure_tag_sysmem) { + create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); + } + + g_free(nodename); +} + +static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) +{ + const VirtMachineState *board = container_of(binfo, VirtMachineState, + bootinfo); + MachineState *ms = MACHINE(board); + + + *fdt_size = board->fdt_size; + return ms->fdt; +} + +static void virt_build_smbios(VirtMachineState *vms) +{ + MachineClass *mc = MACHINE_GET_CLASS(vms); + VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); + uint8_t *smbios_tables, *smbios_anchor; + size_t smbios_tables_len, smbios_anchor_len; + const char *product = "QEMU Virtual Machine"; + + if (kvm_enabled()) { + product = "KVM Virtual Machine"; + } + + smbios_set_defaults("QEMU", product, + vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, + true, SMBIOS_ENTRY_POINT_TYPE_64); + + smbios_get_tables(MACHINE(vms), NULL, 0, + &smbios_tables, &smbios_tables_len, + &smbios_anchor, &smbios_anchor_len, + &error_fatal); + + if (smbios_anchor) { + fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", + smbios_tables, smbios_tables_len); + fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", + smbios_anchor, smbios_anchor_len); + } +} + +static +void virt_machine_done(Notifier *notifier, void *data) +{ + VirtMachineState *vms = container_of(notifier, VirtMachineState, + machine_done); + MachineState *ms = MACHINE(vms); + ARMCPU *cpu = ARM_CPU(first_cpu); + struct arm_boot_info *info = &vms->bootinfo; + AddressSpace *as = arm_boot_address_space(cpu, info); + + /* + * If the user provided a dtb, we assume the dynamic sysbus nodes + * already are integrated there. This corresponds to a use case where + * the dynamic sysbus nodes are complex and their generation is not yet + * supported. In that case the user can take charge of the guest dt + * while qemu takes charge of the qom stuff. + */ + if (info->dtb_filename == NULL) { + platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", + vms->memmap[VIRT_PLATFORM_BUS].base, + vms->memmap[VIRT_PLATFORM_BUS].size, + vms->irqmap[VIRT_PLATFORM_BUS]); + } + if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { + exit(1); + } + + fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); + + virt_acpi_setup(vms); + virt_build_smbios(vms); +} + +static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) +{ + uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; + VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); + + if (!vmc->disallow_affinity_adjustment) { + /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the + * GIC's target-list limitations. 32-bit KVM hosts currently + * always create clusters of 4 CPUs, but that is expected to + * change when they gain support for gicv3. When KVM is enabled + * it will override the changes we make here, therefore our + * purposes are to make TCG consistent (with 64-bit KVM hosts) + * and to improve SGI efficiency. + */ + if (vms->gic_version == VIRT_GIC_VERSION_2) { + clustersz = GIC_TARGETLIST_BITS; + } else { + clustersz = GICV3_TARGETLIST_BITS; + } + } + return arm_cpu_mp_affinity(idx, clustersz); +} + +static void virt_set_memmap(VirtMachineState *vms, int pa_bits) +{ + MachineState *ms = MACHINE(vms); + hwaddr base, device_memory_base, device_memory_size, memtop; + int i; + + vms->memmap = extended_memmap; + + for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { + vms->memmap[i] = base_memmap[i]; + } + + if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { + error_report("unsupported number of memory slots: %"PRIu64, + ms->ram_slots); + exit(EXIT_FAILURE); + } + + /* + * !highmem is exactly the same as limiting the PA space to 32bit, + * irrespective of the underlying capabilities of the HW. + */ + if (!vms->highmem) { + pa_bits = 32; + } + + /* + * We compute the base of the high IO region depending on the + * amount of initial and device memory. The device memory start/size + * is aligned on 1GiB. We never put the high IO region below 256GiB + * so that if maxram_size is < 255GiB we keep the legacy memory map. + * The device region size assumes 1GiB page max alignment per slot. + */ + device_memory_base = + ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); + device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; + + /* Base address of the high IO region */ + memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); + if (memtop > BIT_ULL(pa_bits)) { + error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n", + pa_bits, memtop - BIT_ULL(pa_bits)); + exit(EXIT_FAILURE); + } + if (base < device_memory_base) { + error_report("maxmem/slots too huge"); + exit(EXIT_FAILURE); + } + if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { + base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; + } + + /* We know for sure that at least the memory fits in the PA space */ + vms->highest_gpa = memtop - 1; + + for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { + hwaddr size = extended_memmap[i].size; + bool fits; + + base = ROUND_UP(base, size); + vms->memmap[i].base = base; + vms->memmap[i].size = size; + + /* + * Check each device to see if they fit in the PA space, + * moving highest_gpa as we go. + * + * For each device that doesn't fit, disable it. + */ + fits = (base + size) <= BIT_ULL(pa_bits); + if (fits) { + vms->highest_gpa = base + size - 1; + } + + switch (i) { + case VIRT_HIGH_GIC_REDIST2: + vms->highmem_redists &= fits; + break; + case VIRT_HIGH_PCIE_ECAM: + vms->highmem_ecam &= fits; + break; + case VIRT_HIGH_PCIE_MMIO: + vms->highmem_mmio &= fits; + break; + } + + base += size; + } + + if (device_memory_size > 0) { + ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); + ms->device_memory->base = device_memory_base; + memory_region_init(&ms->device_memory->mr, OBJECT(vms), + "device-memory", device_memory_size); + } +} + +/* + * finalize_gic_version - Determines the final gic_version + * according to the gic-version property + * + * Default GIC type is v2 + */ +static void finalize_gic_version(VirtMachineState *vms) +{ + unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; + + if (kvm_enabled()) { + int probe_bitmap; + + if (!kvm_irqchip_in_kernel()) { + switch (vms->gic_version) { + case VIRT_GIC_VERSION_HOST: + warn_report( + "gic-version=host not relevant with kernel-irqchip=off " + "as only userspace GICv2 is supported. Using v2 ..."); + return; + case VIRT_GIC_VERSION_MAX: + case VIRT_GIC_VERSION_NOSEL: + vms->gic_version = VIRT_GIC_VERSION_2; + return; + case VIRT_GIC_VERSION_2: + return; + case VIRT_GIC_VERSION_3: + error_report( + "gic-version=3 is not supported with kernel-irqchip=off"); + exit(1); + case VIRT_GIC_VERSION_4: + error_report( + "gic-version=4 is not supported with kernel-irqchip=off"); + exit(1); + } + } + + probe_bitmap = kvm_arm_vgic_probe(); + if (!probe_bitmap) { + error_report("Unable to determine GIC version supported by host"); + exit(1); + } + + switch (vms->gic_version) { + case VIRT_GIC_VERSION_HOST: + case VIRT_GIC_VERSION_MAX: + if (probe_bitmap & KVM_ARM_VGIC_V3) { + vms->gic_version = VIRT_GIC_VERSION_3; + } else { + vms->gic_version = VIRT_GIC_VERSION_2; + } + return; + case VIRT_GIC_VERSION_NOSEL: + if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { + vms->gic_version = VIRT_GIC_VERSION_2; + } else if (probe_bitmap & KVM_ARM_VGIC_V3) { + /* + * in case the host does not support v2 in-kernel emulation or + * the end-user requested more than 8 VCPUs we now default + * to v3. In any case defaulting to v2 would be broken. + */ + vms->gic_version = VIRT_GIC_VERSION_3; + } else if (max_cpus > GIC_NCPU) { + error_report("host only supports in-kernel GICv2 emulation " + "but more than 8 vcpus are requested"); + exit(1); + } + break; + case VIRT_GIC_VERSION_2: + case VIRT_GIC_VERSION_3: + break; + case VIRT_GIC_VERSION_4: + error_report("gic-version=4 is not supported with KVM"); + exit(1); + } + + /* Check chosen version is effectively supported by the host */ + if (vms->gic_version == VIRT_GIC_VERSION_2 && + !(probe_bitmap & KVM_ARM_VGIC_V2)) { + error_report("host does not support in-kernel GICv2 emulation"); + exit(1); + } else if (vms->gic_version == VIRT_GIC_VERSION_3 && + !(probe_bitmap & KVM_ARM_VGIC_V3)) { + error_report("host does not support in-kernel GICv3 emulation"); + exit(1); + } + return; + } + + /* TCG mode */ + switch (vms->gic_version) { + case VIRT_GIC_VERSION_NOSEL: + vms->gic_version = VIRT_GIC_VERSION_2; + break; + case VIRT_GIC_VERSION_MAX: + if (module_object_class_by_name("arm-gicv3")) { + /* CONFIG_ARM_GICV3_TCG was set */ + if (vms->virt) { + /* GICv4 only makes sense if CPU has EL2 */ + vms->gic_version = VIRT_GIC_VERSION_4; + } else { + vms->gic_version = VIRT_GIC_VERSION_3; + } + } else { + vms->gic_version = VIRT_GIC_VERSION_2; + } + break; + case VIRT_GIC_VERSION_HOST: + error_report("gic-version=host requires KVM"); + exit(1); + case VIRT_GIC_VERSION_4: + if (!vms->virt) { + error_report("gic-version=4 requires virtualization enabled"); + exit(1); + } + break; + case VIRT_GIC_VERSION_2: + case VIRT_GIC_VERSION_3: + break; + } +} + +/* + * virt_cpu_post_init() must be called after the CPUs have + * been realized and the GIC has been created. + */ +static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) +{ + int max_cpus = MACHINE(vms)->smp.max_cpus; + bool aarch64, pmu, steal_time; + CPUState *cpu; + + aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); + pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); + steal_time = object_property_get_bool(OBJECT(first_cpu), + "kvm-steal-time", NULL); + + if (kvm_enabled()) { + hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; + hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; + + if (steal_time) { + MemoryRegion *pvtime = g_new(MemoryRegion, 1); + hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; + + /* The memory region size must be a multiple of host page size. */ + pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); + + if (pvtime_size > pvtime_reg_size) { + error_report("pvtime requires a %" HWADDR_PRId + " byte memory region for %d CPUs," + " but only %" HWADDR_PRId " has been reserved", + pvtime_size, max_cpus, pvtime_reg_size); + exit(1); + } + + memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); + memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); + } + + CPU_FOREACH(cpu) { + if (pmu) { + assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); + if (kvm_irqchip_in_kernel()) { + kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); + } + kvm_arm_pmu_init(cpu); + } + if (steal_time) { + kvm_arm_pvtime_init(cpu, pvtime_reg_base + + cpu->cpu_index * PVTIME_SIZE_PER_CPU); + } + } + } else { + if (aarch64 && vms->highmem) { + int requested_pa_size = 64 - clz64(vms->highest_gpa); + int pamax = arm_pamax(ARM_CPU(first_cpu)); + + if (pamax < requested_pa_size) { + error_report("VCPU supports less PA bits (%d) than " + "requested by the memory map (%d)", + pamax, requested_pa_size); + exit(1); + } + } + } +} + +static void machvirt_init(MachineState *machine) +{ + VirtMachineState *vms = VIRT_MACHINE(machine); + VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); + MachineClass *mc = MACHINE_GET_CLASS(machine); + const CPUArchIdList *possible_cpus; + MemoryRegion *sysmem = get_system_memory(); + MemoryRegion *secure_sysmem = NULL; + MemoryRegion *tag_sysmem = NULL; + MemoryRegion *secure_tag_sysmem = NULL; + int n, virt_max_cpus; + bool firmware_loaded; + bool aarch64 = true; + bool has_ged = !vmc->no_ged; + unsigned int smp_cpus = machine->smp.cpus; + unsigned int max_cpus = machine->smp.max_cpus; + + if (!cpu_type_valid(machine->cpu_type)) { + error_report("mach-virt: CPU type %s not supported", machine->cpu_type); + exit(1); + } + + possible_cpus = mc->possible_cpu_arch_ids(machine); + + /* + * In accelerated mode, the memory map is computed earlier in kvm_type() + * to create a VM with the right number of IPA bits. + */ + if (!vms->memmap) { + Object *cpuobj; + ARMCPU *armcpu; + int pa_bits; + + /* + * Instanciate a temporary CPU object to find out about what + * we are about to deal with. Once this is done, get rid of + * the object. + */ + cpuobj = object_new(possible_cpus->cpus[0].type); + armcpu = ARM_CPU(cpuobj); + + pa_bits = arm_pamax(armcpu); + + object_unref(cpuobj); + + virt_set_memmap(vms, pa_bits); + } + + /* We can probe only here because during property set + * KVM is not available yet + */ + finalize_gic_version(vms); + + if (vms->secure) { + /* + * The Secure view of the world is the same as the NonSecure, + * but with a few extra devices. Create it as a container region + * containing the system memory at low priority; any secure-only + * devices go in at higher priority and take precedence. + */ + secure_sysmem = g_new(MemoryRegion, 1); + memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", + UINT64_MAX); + memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); + } + + firmware_loaded = virt_firmware_init(vms, sysmem, + secure_sysmem ?: sysmem); + + /* If we have an EL3 boot ROM then the assumption is that it will + * implement PSCI itself, so disable QEMU's internal implementation + * so it doesn't get in the way. Instead of starting secondary + * CPUs in PSCI powerdown state we will start them all running and + * let the boot ROM sort them out. + * The usual case is that we do use QEMU's PSCI implementation; + * if the guest has EL2 then we will use SMC as the conduit, + * and otherwise we will use HVC (for backwards compatibility and + * because if we're using KVM then we must use HVC). + */ + if (vms->secure && firmware_loaded) { + vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; + } else if (vms->virt) { + vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; + } else { + vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; + } + + /* + * The maximum number of CPUs depends on the GIC version, or on how + * many redistributors we can fit into the memory map (which in turn + * depends on whether this is a GICv3 or v4). + */ + if (vms->gic_version == VIRT_GIC_VERSION_2) { + virt_max_cpus = GIC_NCPU; + } else { + virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST) + + virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); + } + + if (max_cpus > virt_max_cpus) { + error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " + "supported by machine 'mach-virt' (%d)", + max_cpus, virt_max_cpus); + exit(1); + } + + if (vms->secure && (kvm_enabled() || hvf_enabled())) { + error_report("mach-virt: %s does not support providing " + "Security extensions (TrustZone) to the guest CPU", + kvm_enabled() ? "KVM" : "HVF"); + exit(1); + } + + if (vms->virt && (kvm_enabled() || hvf_enabled())) { + error_report("mach-virt: %s does not support providing " + "Virtualization extensions to the guest CPU", + kvm_enabled() ? "KVM" : "HVF"); + exit(1); + } + + if (vms->mte && (kvm_enabled() || hvf_enabled())) { + error_report("mach-virt: %s does not support providing " + "MTE to the guest CPU", + kvm_enabled() ? "KVM" : "HVF"); + exit(1); + } + + create_fdt(vms); + + assert(possible_cpus->len == max_cpus); + for (n = 0; n < possible_cpus->len; n++) { + Object *cpuobj; + CPUState *cs; + + if (n >= smp_cpus) { + break; + } + + cpuobj = object_new(possible_cpus->cpus[n].type); + object_property_set_int(cpuobj, "mp-affinity", + possible_cpus->cpus[n].arch_id, NULL); + + cs = CPU(cpuobj); + cs->cpu_index = n; + + numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), + &error_fatal); + + aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); + + if (!vms->secure) { + object_property_set_bool(cpuobj, "has_el3", false, NULL); + } + + if (!vms->virt && object_property_find(cpuobj, "has_el2")) { + object_property_set_bool(cpuobj, "has_el2", false, NULL); + } + + if (vmc->kvm_no_adjvtime && + object_property_find(cpuobj, "kvm-no-adjvtime")) { + object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); + } + + if (vmc->no_kvm_steal_time && + object_property_find(cpuobj, "kvm-steal-time")) { + object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); + } + + if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { + object_property_set_bool(cpuobj, "pmu", false, NULL); + } + + if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { + object_property_set_bool(cpuobj, "lpa2", false, NULL); + } + + if (object_property_find(cpuobj, "reset-cbar")) { + object_property_set_int(cpuobj, "reset-cbar", + vms->memmap[VIRT_CPUPERIPHS].base, + &error_abort); + } + + object_property_set_link(cpuobj, "memory", OBJECT(sysmem), + &error_abort); + if (vms->secure) { + object_property_set_link(cpuobj, "secure-memory", + OBJECT(secure_sysmem), &error_abort); + } + + if (vms->mte) { + /* Create the memory region only once, but link to all cpus. */ + if (!tag_sysmem) { + /* + * The property exists only if MemTag is supported. + * If it is, we must allocate the ram to back that up. + */ + if (!object_property_find(cpuobj, "tag-memory")) { + error_report("MTE requested, but not supported " + "by the guest CPU"); + exit(1); + } + + tag_sysmem = g_new(MemoryRegion, 1); + memory_region_init(tag_sysmem, OBJECT(machine), + "tag-memory", UINT64_MAX / 32); + + if (vms->secure) { + secure_tag_sysmem = g_new(MemoryRegion, 1); + memory_region_init(secure_tag_sysmem, OBJECT(machine), + "secure-tag-memory", UINT64_MAX / 32); + + /* As with ram, secure-tag takes precedence over tag. */ + memory_region_add_subregion_overlap(secure_tag_sysmem, 0, + tag_sysmem, -1); + } + } + + object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), + &error_abort); + if (vms->secure) { + object_property_set_link(cpuobj, "secure-tag-memory", + OBJECT(secure_tag_sysmem), + &error_abort); + } + } + + qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); + object_unref(cpuobj); + } + fdt_add_timer_nodes(vms); + fdt_add_cpu_nodes(vms); + + memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, + machine->ram); + if (machine->device_memory) { + memory_region_add_subregion(sysmem, machine->device_memory->base, + &machine->device_memory->mr); + } + + virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); + + create_gic(vms, sysmem); + + virt_cpu_post_init(vms, sysmem); + + fdt_add_pmu_nodes(vms); + + create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); + + if (vms->secure) { + create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); + create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); + } + + if (tag_sysmem) { + create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, + machine->ram_size, "mach-virt.tag"); + } + + vms->highmem_ecam &= (!firmware_loaded || aarch64); + + create_rtc(vms); + + create_pcie(vms); + + if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { + vms->acpi_dev = create_acpi_ged(vms); + } else { + create_gpio_devices(vms, VIRT_GPIO, sysmem); + } + + if (vms->secure && !vmc->no_secure_gpio) { + create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); + } + + /* connect powerdown request */ + vms->powerdown_notifier.notify = virt_powerdown_req; + qemu_register_powerdown_notifier(&vms->powerdown_notifier); + + /* Create mmio transports, so the user can create virtio backends + * (which will be automatically plugged in to the transports). If + * no backend is created the transport will just sit harmlessly idle. + */ + create_virtio_devices(vms); + + vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); + rom_set_fw(vms->fw_cfg); + + create_platform_bus(vms); + + if (machine->nvdimms_state->is_enabled) { + const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { + .space_id = AML_AS_SYSTEM_MEMORY, + .address = vms->memmap[VIRT_NVDIMM_ACPI].base, + .bit_width = NVDIMM_ACPI_IO_LEN << 3 + }; + + nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, + arm_virt_nvdimm_acpi_dsmio, + vms->fw_cfg, OBJECT(vms)); + } + + vms->bootinfo.ram_size = machine->ram_size; + vms->bootinfo.board_id = -1; + vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; + vms->bootinfo.get_dtb = machvirt_dtb; + vms->bootinfo.skip_dtb_autoload = true; + vms->bootinfo.firmware_loaded = firmware_loaded; + vms->bootinfo.psci_conduit = vms->psci_conduit; + arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); + + vms->machine_done.notify = virt_machine_done; + qemu_add_machine_init_done_notifier(&vms->machine_done); +} + +static bool virt_get_secure(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->secure; +} + +static void virt_set_secure(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->secure = value; +} + +static bool virt_get_virt(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->virt; +} + +static void virt_set_virt(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->virt = value; +} + +static bool virt_get_highmem(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->highmem; +} + +static void virt_set_highmem(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->highmem = value; +} + +static bool virt_get_its(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->its; +} + +static void virt_set_its(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->its = value; +} + +static bool virt_get_dtb_randomness(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->dtb_randomness; +} + +static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->dtb_randomness = value; +} + +static char *virt_get_oem_id(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return g_strdup(vms->oem_id); +} + +static void virt_set_oem_id(Object *obj, const char *value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + size_t len = strlen(value); + + if (len > 6) { + error_setg(errp, + "User specified oem-id value is bigger than 6 bytes in size"); + return; + } + + strncpy(vms->oem_id, value, 6); +} + +static char *virt_get_oem_table_id(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return g_strdup(vms->oem_table_id); +} + +static void virt_set_oem_table_id(Object *obj, const char *value, + Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + size_t len = strlen(value); + + if (len > 8) { + error_setg(errp, + "User specified oem-table-id value is bigger than 8 bytes in size"); + return; + } + strncpy(vms->oem_table_id, value, 8); +} + + +bool virt_is_acpi_enabled(VirtMachineState *vms) +{ + if (vms->acpi == ON_OFF_AUTO_OFF) { + return false; + } + return true; +} + +static void virt_get_acpi(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + OnOffAuto acpi = vms->acpi; + + visit_type_OnOffAuto(v, name, &acpi, errp); +} + +static void virt_set_acpi(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + visit_type_OnOffAuto(v, name, &vms->acpi, errp); +} + +static bool virt_get_ras(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->ras; +} + +static void virt_set_ras(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->ras = value; +} + +static bool virt_get_mte(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->mte; +} + +static void virt_set_mte(Object *obj, bool value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->mte = value; +} + +static char *virt_get_gic_version(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + const char *val; + + switch (vms->gic_version) { + case VIRT_GIC_VERSION_4: + val = "4"; + break; + case VIRT_GIC_VERSION_3: + val = "3"; + break; + default: + val = "2"; + break; + } + return g_strdup(val); +} + +static void virt_set_gic_version(Object *obj, const char *value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + if (!strcmp(value, "4")) { + vms->gic_version = VIRT_GIC_VERSION_4; + } else if (!strcmp(value, "3")) { + vms->gic_version = VIRT_GIC_VERSION_3; + } else if (!strcmp(value, "2")) { + vms->gic_version = VIRT_GIC_VERSION_2; + } else if (!strcmp(value, "host")) { + vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ + } else if (!strcmp(value, "max")) { + vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ + } else { + error_setg(errp, "Invalid gic-version value"); + error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); + } +} + +static char *virt_get_iommu(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + switch (vms->iommu) { + case VIRT_IOMMU_NONE: + return g_strdup("none"); + case VIRT_IOMMU_SMMUV3: + return g_strdup("smmuv3"); + default: + g_assert_not_reached(); + } +} + +static void virt_set_iommu(Object *obj, const char *value, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + if (!strcmp(value, "smmuv3")) { + vms->iommu = VIRT_IOMMU_SMMUV3; + } else if (!strcmp(value, "none")) { + vms->iommu = VIRT_IOMMU_NONE; + } else { + error_setg(errp, "Invalid iommu value"); + error_append_hint(errp, "Valid values are none, smmuv3.\n"); + } +} + +static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + return vms->default_bus_bypass_iommu; +} + +static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, + Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + + vms->default_bus_bypass_iommu = value; +} + +static CpuInstanceProperties +virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) +{ + MachineClass *mc = MACHINE_GET_CLASS(ms); + const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); + + assert(cpu_index < possible_cpus->len); + return possible_cpus->cpus[cpu_index].props; +} + +static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) +{ + int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; + + return socket_id % ms->numa_state->num_nodes; +} + +static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) +{ + int n; + unsigned int max_cpus = ms->smp.max_cpus; + VirtMachineState *vms = VIRT_MACHINE(ms); + MachineClass *mc = MACHINE_GET_CLASS(vms); + + if (ms->possible_cpus) { + assert(ms->possible_cpus->len == max_cpus); + return ms->possible_cpus; + } + + ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + + sizeof(CPUArchId) * max_cpus); + ms->possible_cpus->len = max_cpus; + for (n = 0; n < ms->possible_cpus->len; n++) { + ms->possible_cpus->cpus[n].type = ms->cpu_type; + ms->possible_cpus->cpus[n].arch_id = + virt_cpu_mp_affinity(vms, n); + + assert(!mc->smp_props.dies_supported); + ms->possible_cpus->cpus[n].props.has_socket_id = true; + ms->possible_cpus->cpus[n].props.socket_id = + n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); + ms->possible_cpus->cpus[n].props.has_cluster_id = true; + ms->possible_cpus->cpus[n].props.cluster_id = + (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; + ms->possible_cpus->cpus[n].props.has_core_id = true; + ms->possible_cpus->cpus[n].props.core_id = + (n / ms->smp.threads) % ms->smp.cores; + ms->possible_cpus->cpus[n].props.has_thread_id = true; + ms->possible_cpus->cpus[n].props.thread_id = + n % ms->smp.threads; + } + return ms->possible_cpus; +} + +static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, + Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); + const MachineState *ms = MACHINE(hotplug_dev); + const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); + + if (!vms->acpi_dev) { + error_setg(errp, + "memory hotplug is not enabled: missing acpi-ged device"); + return; + } + + if (vms->mte) { + error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); + return; + } + + if (is_nvdimm && !ms->nvdimms_state->is_enabled) { + error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); + return; + } + + pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); +} + +static void virt_memory_plug(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); + MachineState *ms = MACHINE(hotplug_dev); + bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); + + pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); + + if (is_nvdimm) { + nvdimm_plug(ms->nvdimms_state); + } + + hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), + dev, &error_abort); +} + +static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev); + Error *local_err = NULL; + + if (!hotplug_dev2 && dev->hotplugged) { + /* + * Without a bus hotplug handler, we cannot control the plug/unplug + * order. We should never reach this point when hotplugging on ARM. + * However, it's nice to add a safety net, similar to what we have + * on x86. + */ + error_setg(errp, "hotplug of virtio based memory devices not supported" + " on this bus."); + return; + } + /* + * First, see if we can plug this memory device at all. If that + * succeeds, branch of to the actual hotplug handler. + */ + memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL, + &local_err); + if (!local_err && hotplug_dev2) { + hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err); + } + error_propagate(errp, local_err); +} + +static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev); + Error *local_err = NULL; + + /* + * Plug the memory device first and then branch off to the actual + * hotplug handler. If that one fails, we can easily undo the memory + * device bits. + */ + memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev)); + if (hotplug_dev2) { + hotplug_handler_plug(hotplug_dev2, dev, &local_err); + if (local_err) { + memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev)); + } + } + error_propagate(errp, local_err); +} + +static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + /* We don't support hot unplug of virtio based memory devices */ + error_setg(errp, "virtio based memory devices cannot be unplugged."); +} + + +static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); + + if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { + virt_memory_pre_plug(hotplug_dev, dev, errp); + } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) { + virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp); + } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { + hwaddr db_start = 0, db_end = 0; + char *resv_prop_str; + + if (vms->iommu != VIRT_IOMMU_NONE) { + error_setg(errp, "virt machine does not support multiple IOMMUs"); + return; + } + + switch (vms->msi_controller) { + case VIRT_MSI_CTRL_NONE: + return; + case VIRT_MSI_CTRL_ITS: + /* GITS_TRANSLATER page */ + db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; + db_end = base_memmap[VIRT_GIC_ITS].base + + base_memmap[VIRT_GIC_ITS].size - 1; + break; + case VIRT_MSI_CTRL_GICV2M: + /* MSI_SETSPI_NS page */ + db_start = base_memmap[VIRT_GIC_V2M].base; + db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; + break; + } + resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", + db_start, db_end, + VIRTIO_IOMMU_RESV_MEM_T_MSI); + + object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp); + object_property_set_str(OBJECT(dev), "reserved-regions[0]", + resv_prop_str, errp); + g_free(resv_prop_str); + } +} + +static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); + + if (vms->platform_bus_dev) { + MachineClass *mc = MACHINE_GET_CLASS(vms); + + if (device_is_dynamic_sysbus(mc, dev)) { + platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), + SYS_BUS_DEVICE(dev)); + } + } + if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { + virt_memory_plug(hotplug_dev, dev, errp); + } + + if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) { + virt_virtio_md_pci_plug(hotplug_dev, dev, errp); + } + + if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { + PCIDevice *pdev = PCI_DEVICE(dev); + + vms->iommu = VIRT_IOMMU_VIRTIO; + vms->virtio_iommu_bdf = pci_get_bdf(pdev); + create_virtio_iommu_dt_bindings(vms); + } +} + +static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); + Error *local_err = NULL; + + if (!vms->acpi_dev) { + error_setg(&local_err, + "memory hotplug is not enabled: missing acpi-ged device"); + goto out; + } + + if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { + error_setg(&local_err, + "nvdimm device hot unplug is not supported yet."); + goto out; + } + + hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, + &local_err); +out: + error_propagate(errp, local_err); +} + +static void virt_dimm_unplug(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); + Error *local_err = NULL; + + hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); + if (local_err) { + goto out; + } + + pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); + qdev_unrealize(dev); + +out: + error_propagate(errp, local_err); +} + +static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { + virt_dimm_unplug_request(hotplug_dev, dev, errp); + } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) { + virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp); + } else { + error_setg(errp, "device unplug request for unsupported device" + " type: %s", object_get_typename(OBJECT(dev))); + } +} + +static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { + virt_dimm_unplug(hotplug_dev, dev, errp); + } else { + error_setg(errp, "virt: device unplug for unsupported device" + " type: %s", object_get_typename(OBJECT(dev))); + } +} + +static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, + DeviceState *dev) +{ + MachineClass *mc = MACHINE_GET_CLASS(machine); + + if (device_is_dynamic_sysbus(mc, dev) || + object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || + object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) || + object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { + return HOTPLUG_HANDLER(machine); + } + return NULL; +} + +/* + * for arm64 kvm_type [7-0] encodes the requested number of bits + * in the IPA address space + */ +static int virt_kvm_type(MachineState *ms, const char *type_str) +{ + VirtMachineState *vms = VIRT_MACHINE(ms); + int max_vm_pa_size, requested_pa_size; + bool fixed_ipa; + + max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); + + /* we freeze the memory map to compute the highest gpa */ + virt_set_memmap(vms, max_vm_pa_size); + + requested_pa_size = 64 - clz64(vms->highest_gpa); + + /* + * KVM requires the IPA size to be at least 32 bits. + */ + if (requested_pa_size < 32) { + requested_pa_size = 32; + } + + if (requested_pa_size > max_vm_pa_size) { + error_report("-m and ,maxmem option values " + "require an IPA range (%d bits) larger than " + "the one supported by the host (%d bits)", + requested_pa_size, max_vm_pa_size); + exit(1); + } + /* + * We return the requested PA log size, unless KVM only supports + * the implicit legacy 40b IPA setting, in which case the kvm_type + * must be 0. + */ + return fixed_ipa ? 0 : requested_pa_size; +} + +static void virt_machine_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); + + mc->init = machvirt_init; + /* Start with max_cpus set to 512, which is the maximum supported by KVM. + * The value may be reduced later when we have more information about the + * configuration of the particular instance. + */ + mc->max_cpus = 512; + machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); + machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); + machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); + machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); +#ifdef CONFIG_TPM + machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); +#endif + mc->block_default_type = IF_VIRTIO; + mc->no_cdrom = 1; + mc->pci_allow_0_address = true; + /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ + mc->minimum_page_bits = 12; + mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; + mc->cpu_index_to_instance_props = virt_cpu_index_to_props; + mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); + mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; + mc->kvm_type = virt_kvm_type; + assert(!mc->get_hotplug_handler); + mc->get_hotplug_handler = virt_machine_get_hotplug_handler; + hc->pre_plug = virt_machine_device_pre_plug_cb; + hc->plug = virt_machine_device_plug_cb; + hc->unplug_request = virt_machine_device_unplug_request_cb; + hc->unplug = virt_machine_device_unplug_cb; + mc->nvdimm_supported = true; + mc->smp_props.clusters_supported = true; + mc->auto_enable_numa_with_memhp = true; + mc->auto_enable_numa_with_memdev = true; + mc->default_ram_id = "mach-virt.ram"; + + object_class_property_add(oc, "acpi", "OnOffAuto", + virt_get_acpi, virt_set_acpi, + NULL, NULL); + object_class_property_set_description(oc, "acpi", + "Enable ACPI"); + object_class_property_add_bool(oc, "secure", virt_get_secure, + virt_set_secure); + object_class_property_set_description(oc, "secure", + "Set on/off to enable/disable the ARM " + "Security Extensions (TrustZone)"); + + object_class_property_add_bool(oc, "virtualization", virt_get_virt, + virt_set_virt); + object_class_property_set_description(oc, "virtualization", + "Set on/off to enable/disable emulating a " + "guest CPU which implements the ARM " + "Virtualization Extensions"); + + object_class_property_add_bool(oc, "highmem", virt_get_highmem, + virt_set_highmem); + object_class_property_set_description(oc, "highmem", + "Set on/off to enable/disable using " + "physical address space above 32 bits"); + + object_class_property_add_str(oc, "gic-version", virt_get_gic_version, + virt_set_gic_version); + object_class_property_set_description(oc, "gic-version", + "Set GIC version. " + "Valid values are 2, 3, 4, host and max"); + + object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); + object_class_property_set_description(oc, "iommu", + "Set the IOMMU type. " + "Valid values are none and smmuv3"); + + object_class_property_add_bool(oc, "default-bus-bypass-iommu", + virt_get_default_bus_bypass_iommu, + virt_set_default_bus_bypass_iommu); + object_class_property_set_description(oc, "default-bus-bypass-iommu", + "Set on/off to enable/disable " + "bypass_iommu for default root bus"); + + object_class_property_add_bool(oc, "ras", virt_get_ras, + virt_set_ras); + object_class_property_set_description(oc, "ras", + "Set on/off to enable/disable reporting host memory errors " + "to a KVM guest using ACPI and guest external abort exceptions"); + + object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); + object_class_property_set_description(oc, "mte", + "Set on/off to enable/disable emulating a " + "guest CPU which implements the ARM " + "Memory Tagging Extension"); + + object_class_property_add_bool(oc, "its", virt_get_its, + virt_set_its); + object_class_property_set_description(oc, "its", + "Set on/off to enable/disable " + "ITS instantiation"); + + object_class_property_add_bool(oc, "dtb-randomness", + virt_get_dtb_randomness, + virt_set_dtb_randomness); + object_class_property_set_description(oc, "dtb-randomness", + "Set off to disable passing random or " + "non-deterministic dtb nodes to guest"); + + object_class_property_add_bool(oc, "dtb-kaslr-seed", + virt_get_dtb_randomness, + virt_set_dtb_randomness); + object_class_property_set_description(oc, "dtb-kaslr-seed", + "Deprecated synonym of dtb-randomness"); + + object_class_property_add_str(oc, "x-oem-id", + virt_get_oem_id, + virt_set_oem_id); + object_class_property_set_description(oc, "x-oem-id", + "Override the default value of field OEMID " + "in ACPI table header." + "The string may be up to 6 bytes in size"); + + + object_class_property_add_str(oc, "x-oem-table-id", + virt_get_oem_table_id, + virt_set_oem_table_id); + object_class_property_set_description(oc, "x-oem-table-id", + "Override the default value of field OEM Table ID " + "in ACPI table header." + "The string may be up to 8 bytes in size"); + +} + +static void virt_instance_init(Object *obj) +{ + VirtMachineState *vms = VIRT_MACHINE(obj); + VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); + + /* EL3 is disabled by default on virt: this makes us consistent + * between KVM and TCG for this board, and it also allows us to + * boot UEFI blobs which assume no TrustZone support. + */ + vms->secure = false; + + /* EL2 is also disabled by default, for similar reasons */ + vms->virt = false; + + /* High memory is enabled by default */ + vms->highmem = true; + vms->gic_version = VIRT_GIC_VERSION_NOSEL; + + vms->highmem_ecam = !vmc->no_highmem_ecam; + vms->highmem_mmio = true; + vms->highmem_redists = true; + + if (vmc->no_its) { + vms->its = false; + } else { + /* Default allows ITS instantiation */ + vms->its = true; + + if (vmc->no_tcg_its) { + vms->tcg_its = false; + } else { + vms->tcg_its = true; + } + } + + /* Default disallows iommu instantiation */ + vms->iommu = VIRT_IOMMU_NONE; + + /* The default root bus is attached to iommu by default */ + vms->default_bus_bypass_iommu = false; + + /* Default disallows RAS instantiation */ + vms->ras = false; + + /* MTE is disabled by default. */ + vms->mte = false; + + /* Supply kaslr-seed and rng-seed by default */ + vms->dtb_randomness = true; + + vms->irqmap = a15irqmap; + + virt_flash_create(vms); + + vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); + vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); +} + +static const TypeInfo virt_machine_info = { + .name = TYPE_VIRT_MACHINE, + .parent = TYPE_MACHINE, + .abstract = true, + .instance_size = sizeof(VirtMachineState), + .class_size = sizeof(VirtMachineClass), + .class_init = virt_machine_class_init, + .instance_init = virt_instance_init, + .interfaces = (InterfaceInfo[]) { + { TYPE_HOTPLUG_HANDLER }, + { } + }, +}; + +static void machvirt_machine_init(void) +{ + type_register_static(&virt_machine_info); +} +type_init(machvirt_machine_init); + +static void virt_machine_7_2_options(MachineClass *mc) +{ +} +DEFINE_VIRT_MACHINE_AS_LATEST(7, 2) + +static void virt_machine_7_1_options(MachineClass *mc) +{ + virt_machine_7_2_options(mc); + compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); +} +DEFINE_VIRT_MACHINE(7, 1) + +static void virt_machine_7_0_options(MachineClass *mc) +{ + virt_machine_7_1_options(mc); + compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); +} +DEFINE_VIRT_MACHINE(7, 0) + +static void virt_machine_6_2_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_7_0_options(mc); + compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); + vmc->no_tcg_lpa2 = true; +} +DEFINE_VIRT_MACHINE(6, 2) + +static void virt_machine_6_1_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_6_2_options(mc); + compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); + mc->smp_props.prefer_sockets = true; + vmc->no_cpu_topology = true; + + /* qemu ITS was introduced with 6.2 */ + vmc->no_tcg_its = true; +} +DEFINE_VIRT_MACHINE(6, 1) + +static void virt_machine_6_0_options(MachineClass *mc) +{ + virt_machine_6_1_options(mc); + compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); +} +DEFINE_VIRT_MACHINE(6, 0) + +static void virt_machine_5_2_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_6_0_options(mc); + compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); + vmc->no_secure_gpio = true; +} +DEFINE_VIRT_MACHINE(5, 2) + +static void virt_machine_5_1_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_5_2_options(mc); + compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); + vmc->no_kvm_steal_time = true; +} +DEFINE_VIRT_MACHINE(5, 1) + +static void virt_machine_5_0_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_5_1_options(mc); + compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); + mc->numa_mem_supported = true; + vmc->acpi_expose_flash = true; + mc->auto_enable_numa_with_memdev = false; +} +DEFINE_VIRT_MACHINE(5, 0) + +static void virt_machine_4_2_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_5_0_options(mc); + compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); + vmc->kvm_no_adjvtime = true; +} +DEFINE_VIRT_MACHINE(4, 2) + +static void virt_machine_4_1_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_4_2_options(mc); + compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); + vmc->no_ged = true; + mc->auto_enable_numa_with_memhp = false; +} +DEFINE_VIRT_MACHINE(4, 1) + +static void virt_machine_4_0_options(MachineClass *mc) +{ + virt_machine_4_1_options(mc); + compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); +} +DEFINE_VIRT_MACHINE(4, 0) + +static void virt_machine_3_1_options(MachineClass *mc) +{ + virt_machine_4_0_options(mc); + compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); +} +DEFINE_VIRT_MACHINE(3, 1) + +static void virt_machine_3_0_options(MachineClass *mc) +{ + virt_machine_3_1_options(mc); + compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); +} +DEFINE_VIRT_MACHINE(3, 0) + +static void virt_machine_2_12_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_3_0_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); + vmc->no_highmem_ecam = true; + mc->max_cpus = 255; +} +DEFINE_VIRT_MACHINE(2, 12) + +static void virt_machine_2_11_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_2_12_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); + vmc->smbios_old_sys_ver = true; +} +DEFINE_VIRT_MACHINE(2, 11) + +static void virt_machine_2_10_options(MachineClass *mc) +{ + virt_machine_2_11_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); + /* before 2.11 we never faulted accesses to bad addresses */ + mc->ignore_memory_transaction_failures = true; +} +DEFINE_VIRT_MACHINE(2, 10) + +static void virt_machine_2_9_options(MachineClass *mc) +{ + virt_machine_2_10_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); +} +DEFINE_VIRT_MACHINE(2, 9) + +static void virt_machine_2_8_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_2_9_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); + /* For 2.8 and earlier we falsely claimed in the DT that + * our timers were edge-triggered, not level-triggered. + */ + vmc->claim_edge_triggered_timers = true; +} +DEFINE_VIRT_MACHINE(2, 8) + +static void virt_machine_2_7_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_2_8_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); + /* ITS was introduced with 2.8 */ + vmc->no_its = true; + /* Stick with 1K pages for migration compatibility */ + mc->minimum_page_bits = 0; +} +DEFINE_VIRT_MACHINE(2, 7) + +static void virt_machine_2_6_options(MachineClass *mc) +{ + VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); + + virt_machine_2_7_options(mc); + compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); + vmc->disallow_affinity_adjustment = true; + /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ + vmc->no_pmu = true; +} +DEFINE_VIRT_MACHINE(2, 6) |