summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_pattern_analysis/src/constructor.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_pattern_analysis/src/constructor.rs')
-rw-r--r--compiler/rustc_pattern_analysis/src/constructor.rs1021
1 files changed, 1021 insertions, 0 deletions
diff --git a/compiler/rustc_pattern_analysis/src/constructor.rs b/compiler/rustc_pattern_analysis/src/constructor.rs
new file mode 100644
index 000000000..af0a7497a
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/constructor.rs
@@ -0,0 +1,1021 @@
+//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
+//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
+//!
+//! There are two important bits of core logic in this file: constructor inclusion and constructor
+//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
+//! is straightforward and defined in [`Constructor::is_covered_by`].
+//!
+//! Constructor splitting is mentioned in [`crate::usefulness`] but not detailed. We describe it
+//! precisely here.
+//!
+//!
+//!
+//! # Constructor grouping and splitting
+//!
+//! As explained in the corresponding section in [`crate::usefulness`], to make usefulness tractable
+//! we need to group together constructors that have the same effect when they are used to
+//! specialize the matrix.
+//!
+//! Example:
+//! ```compile_fail,E0004
+//! match (0, false) {
+//! (0 ..=100, true) => {}
+//! (50..=150, false) => {}
+//! (0 ..=200, _) => {}
+//! }
+//! ```
+//!
+//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
+//! `151..=200` and `200..`.
+//!
+//! In [`crate::usefulness`], we had said that `specialize` only takes value-only constructors. We
+//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
+//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
+//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
+//!
+//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
+//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
+//! constructors:
+//! - Whose union covers the whole type, and
+//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
+//! each either disjoint with or covered by any given column constructor).
+//!
+//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the
+//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
+//! column of constructors and splits the set into groups accordingly. The precise invariants of
+//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
+//!
+//! Constructor splitting has two interesting special cases: integer range splitting (see
+//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
+//!
+//!
+//!
+//! # The `Missing` constructor
+//!
+//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
+//!
+//! ```
+//! enum Direction { North, South, East, West }
+//! # let wind = (Direction::North, 0u8);
+//! match wind {
+//! (Direction::North, 50..) => {}
+//! (_, _) => {}
+//! }
+//! ```
+//!
+//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
+//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
+//! bit contextual: to know the exact list of constructors it represents we have to look at the
+//! column. In practice however we don't need to, because by construction it only matches rows that
+//! have wildcards. This is how this constructor is special: the only constructor that covers it is
+//! `Wildcard`.
+//!
+//! The only place where we care about which constructors `Missing` represents is in diagnostics
+//! (see `crate::usefulness::WitnessMatrix::apply_constructor`).
+//!
+//! We choose whether to specialize with `Missing` in
+//! `crate::usefulness::compute_exhaustiveness_and_usefulness`.
+//!
+//!
+//!
+//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
+//!
+//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
+//! They require careful handling.
+//!
+//! First, for soundness reasons related to the possible existence of invalid values, by default we
+//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
+//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
+//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
+//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
+//! place validity that are handled in `crate::usefulness`. Yes this is a bit tricky.
+//!
+//! The second thing is that regardless of the above, it is always allowed to use all the
+//! constructors of a type. For example, all the following is ok:
+//!
+//! ```rust,ignore(example)
+//! # #![feature(never_type)]
+//! # #![feature(exhaustive_patterns)]
+//! fn foo(x: Option<!>) {
+//! match x {
+//! None => {}
+//! Some(_) => {}
+//! }
+//! }
+//! fn bar(x: &[!]) -> u32 {
+//! match x {
+//! [] => 1,
+//! [_] => 2,
+//! [_, _] => 3,
+//! }
+//! }
+//! ```
+//!
+//! Moreover, take the following:
+//!
+//! ```rust
+//! # #![feature(never_type)]
+//! # #![feature(exhaustive_patterns)]
+//! # let x = None::<!>;
+//! match x {
+//! None => {}
+//! }
+//! ```
+//!
+//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
+//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
+//! of a type, we must therefore track which can be omitted.
+//!
+//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
+//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
+//! empty. The difference between empty and nonempty constructors is that empty constructors need
+//! not be present for the match to be exhaustive.
+//!
+//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
+//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
+//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
+//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
+//!
+//! This is all handled by [`TypeCx::ctors_for_ty`] and
+//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
+//!
+//!
+//!
+//! ## Opaque patterns
+//!
+//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
+//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
+//! we assume they never cover each other. In order to respect the invariants of
+//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
+
+use std::cmp::{self, max, min, Ordering};
+use std::fmt;
+use std::iter::once;
+
+use smallvec::SmallVec;
+
+use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
+use rustc_index::bit_set::{BitSet, GrowableBitSet};
+use rustc_index::IndexVec;
+
+use self::Constructor::*;
+use self::MaybeInfiniteInt::*;
+use self::SliceKind::*;
+
+use crate::usefulness::PlaceCtxt;
+use crate::TypeCx;
+
+/// Whether we have seen a constructor in the column or not.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+enum Presence {
+ Unseen,
+ Seen,
+}
+
+#[derive(Debug, Copy, Clone, PartialEq, Eq)]
+pub enum RangeEnd {
+ Included,
+ Excluded,
+}
+
+impl fmt::Display for RangeEnd {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str(match self {
+ RangeEnd::Included => "..=",
+ RangeEnd::Excluded => "..",
+ })
+ }
+}
+
+/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
+/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
+/// `255`. See `signed_bias` for details.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
+pub enum MaybeInfiniteInt {
+ NegInfinity,
+ /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
+ #[non_exhaustive]
+ Finite(u128),
+ /// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range.
+ JustAfterMax,
+ PosInfinity,
+}
+
+impl MaybeInfiniteInt {
+ pub fn new_finite_uint(bits: u128) -> Self {
+ Finite(bits)
+ }
+ pub fn new_finite_int(bits: u128, size: u64) -> Self {
+ // Perform a shift if the underlying types are signed, which makes the interval arithmetic
+ // type-independent.
+ let bias = 1u128 << (size - 1);
+ Finite(bits ^ bias)
+ }
+
+ pub fn as_finite_uint(self) -> Option<u128> {
+ match self {
+ Finite(bits) => Some(bits),
+ _ => None,
+ }
+ }
+ pub fn as_finite_int(self, size: u64) -> Option<u128> {
+ // We decode the shift.
+ match self {
+ Finite(bits) => {
+ let bias = 1u128 << (size - 1);
+ Some(bits ^ bias)
+ }
+ _ => None,
+ }
+ }
+
+ /// Note: this will not turn a finite value into an infinite one or vice-versa.
+ pub fn minus_one(self) -> Self {
+ match self {
+ Finite(n) => match n.checked_sub(1) {
+ Some(m) => Finite(m),
+ None => panic!("Called `MaybeInfiniteInt::minus_one` on 0"),
+ },
+ JustAfterMax => Finite(u128::MAX),
+ x => x,
+ }
+ }
+ /// Note: this will not turn a finite value into an infinite one or vice-versa.
+ pub fn plus_one(self) -> Self {
+ match self {
+ Finite(n) => match n.checked_add(1) {
+ Some(m) => Finite(m),
+ None => JustAfterMax,
+ },
+ JustAfterMax => panic!("Called `MaybeInfiniteInt::plus_one` on u128::MAX+1"),
+ x => x,
+ }
+ }
+}
+
+/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
+/// store a contiguous range.
+///
+/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
+/// space: i.e., `range.lo < range.hi`.
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub struct IntRange {
+ pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
+ pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
+}
+
+impl IntRange {
+ /// Best effort; will not know that e.g. `255u8..` is a singleton.
+ pub fn is_singleton(&self) -> bool {
+ // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
+ // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
+ self.lo.plus_one() == self.hi
+ }
+
+ #[inline]
+ pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
+ IntRange { lo: x, hi: x.plus_one() }
+ }
+
+ #[inline]
+ pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
+ if end == RangeEnd::Included {
+ hi = hi.plus_one();
+ }
+ if lo >= hi {
+ // This should have been caught earlier by E0030.
+ panic!("malformed range pattern: {lo:?}..{hi:?}");
+ }
+ IntRange { lo, hi }
+ }
+
+ fn is_subrange(&self, other: &Self) -> bool {
+ other.lo <= self.lo && self.hi <= other.hi
+ }
+
+ fn intersection(&self, other: &Self) -> Option<Self> {
+ if self.lo < other.hi && other.lo < self.hi {
+ Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
+ } else {
+ None
+ }
+ }
+
+ /// Partition a range of integers into disjoint subranges. This does constructor splitting for
+ /// integer ranges as explained at the top of the file.
+ ///
+ /// This returns an output that covers `self`. The output is split so that the only
+ /// intersections between an output range and a column range are inclusions. No output range
+ /// straddles the boundary of one of the inputs.
+ ///
+ /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
+ ///
+ /// The following input:
+ /// ```text
+ /// (--------------------------) // `self`
+ /// (------) (----------) (-)
+ /// (------) (--------)
+ /// ```
+ /// is first intersected with `self`:
+ /// ```text
+ /// (--------------------------) // `self`
+ /// (----) (----------) (-)
+ /// (------) (--------)
+ /// ```
+ /// and then iterated over as follows:
+ /// ```text
+ /// (-(--)-(-)-(------)-)--(-)-
+ /// ```
+ /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
+ /// as `Presence::Missing`.
+ ///
+ /// ## `isize`/`usize`
+ ///
+ /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
+ /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
+ /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
+ /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
+ /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
+ /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
+ ///
+ /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
+ /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
+ /// fictitious ranges sensibly.
+ fn split(
+ &self,
+ column_ranges: impl Iterator<Item = IntRange>,
+ ) -> impl Iterator<Item = (Presence, IntRange)> {
+ // The boundaries of ranges in `column_ranges` intersected with `self`.
+ // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
+ // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
+ // are within an input range.
+ let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
+ .filter_map(|r| self.intersection(&r))
+ .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
+ .collect();
+ // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
+ // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
+ // the accumulated count between distinct boundary values.
+ boundaries.sort_unstable();
+
+ // Accumulate parenthesis counts.
+ let mut paren_counter = 0isize;
+ // Gather pairs of adjacent boundaries.
+ let mut prev_bdy = self.lo;
+ boundaries
+ .into_iter()
+ // End with the end of the range. The count is ignored.
+ .chain(once((self.hi, 0)))
+ // List pairs of adjacent boundaries and the count between them.
+ .map(move |(bdy, delta)| {
+ // `delta` affects the count as we cross `bdy`, so the relevant count between
+ // `prev_bdy` and `bdy` is untouched by `delta`.
+ let ret = (prev_bdy, paren_counter, bdy);
+ prev_bdy = bdy;
+ paren_counter += delta;
+ ret
+ })
+ // Skip empty ranges.
+ .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
+ // Convert back to ranges.
+ .map(move |(prev_bdy, paren_count, bdy)| {
+ use Presence::*;
+ let presence = if paren_count > 0 { Seen } else { Unseen };
+ let range = IntRange { lo: prev_bdy, hi: bdy };
+ (presence, range)
+ })
+ }
+}
+
+/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
+/// first.
+impl fmt::Debug for IntRange {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ if let Finite(lo) = self.lo {
+ write!(f, "{lo}")?;
+ }
+ write!(f, "{}", RangeEnd::Excluded)?;
+ if let Finite(hi) = self.hi {
+ write!(f, "{hi}")?;
+ }
+ Ok(())
+ }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum SliceKind {
+ /// Patterns of length `n` (`[x, y]`).
+ FixedLen(usize),
+ /// Patterns using the `..` notation (`[x, .., y]`).
+ /// Captures any array constructor of `length >= i + j`.
+ /// In the case where `array_len` is `Some(_)`,
+ /// this indicates that we only care about the first `i` and the last `j` values of the array,
+ /// and everything in between is a wildcard `_`.
+ VarLen(usize, usize),
+}
+
+impl SliceKind {
+ fn arity(self) -> usize {
+ match self {
+ FixedLen(length) => length,
+ VarLen(prefix, suffix) => prefix + suffix,
+ }
+ }
+
+ /// Whether this pattern includes patterns of length `other_len`.
+ fn covers_length(self, other_len: usize) -> bool {
+ match self {
+ FixedLen(len) => len == other_len,
+ VarLen(prefix, suffix) => prefix + suffix <= other_len,
+ }
+ }
+}
+
+/// A constructor for array and slice patterns.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub struct Slice {
+ /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
+ pub(crate) array_len: Option<usize>,
+ /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
+ pub(crate) kind: SliceKind,
+}
+
+impl Slice {
+ pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
+ let kind = match (array_len, kind) {
+ // If the middle `..` has length 0, we effectively have a fixed-length pattern.
+ (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
+ (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
+ "Slice pattern of length {} longer than its array length {len}",
+ prefix + suffix
+ ),
+ _ => kind,
+ };
+ Slice { array_len, kind }
+ }
+
+ pub(crate) fn arity(self) -> usize {
+ self.kind.arity()
+ }
+
+ /// See `Constructor::is_covered_by`
+ fn is_covered_by(self, other: Self) -> bool {
+ other.kind.covers_length(self.arity())
+ }
+
+ /// This computes constructor splitting for variable-length slices, as explained at the top of
+ /// the file.
+ ///
+ /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
+ /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
+ /// corresponding lengths. We obviously can't list this infinitude of constructors.
+ /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
+ /// array lengths are equivalent.
+ ///
+ /// Let's look at an example, where we are trying to split the last pattern:
+ /// ```
+ /// # fn foo(x: &[bool]) {
+ /// match x {
+ /// [true, true, ..] => {}
+ /// [.., false, false] => {}
+ /// [..] => {}
+ /// }
+ /// # }
+ /// ```
+ /// Here are the results of specialization for the first few lengths:
+ /// ```
+ /// # fn foo(x: &[bool]) { match x {
+ /// // length 0
+ /// [] => {}
+ /// // length 1
+ /// [_] => {}
+ /// // length 2
+ /// [true, true] => {}
+ /// [false, false] => {}
+ /// [_, _] => {}
+ /// // length 3
+ /// [true, true, _ ] => {}
+ /// [_, false, false] => {}
+ /// [_, _, _ ] => {}
+ /// // length 4
+ /// [true, true, _, _ ] => {}
+ /// [_, _, false, false] => {}
+ /// [_, _, _, _ ] => {}
+ /// // length 5
+ /// [true, true, _, _, _ ] => {}
+ /// [_, _, _, false, false] => {}
+ /// [_, _, _, _, _ ] => {}
+ /// # _ => {}
+ /// # }}
+ /// ```
+ ///
+ /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
+ /// This means that specialization and witness computation with slices of length `l >= 4` will
+ /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
+ /// will be a length `L` above which all lengths behave the same. This is exactly what we need
+ /// for constructor splitting.
+ ///
+ /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
+ /// saw, we can split this in two: lengths below `L` are treated individually with a
+ /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
+ /// constructor.
+ ///
+ /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
+ /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
+ /// long as `L` is positive (to avoid concerns about empty types), all elements after the
+ /// maximum prefix length and before the maximum suffix length are not examined by any
+ /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
+ ///
+ /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
+ /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
+ /// `max_slice` below will be made to have this arity `L`.
+ ///
+ /// If `self` is fixed-length, it is returned as-is.
+ ///
+ /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
+ fn split(
+ self,
+ column_slices: impl Iterator<Item = Slice>,
+ ) -> impl Iterator<Item = (Presence, Slice)> {
+ // Range of lengths below `L`.
+ let smaller_lengths;
+ let arity = self.arity();
+ let mut max_slice = self.kind;
+ // Tracks the smallest variable-length slice we've seen. Any slice arity above it is
+ // therefore `Presence::Seen` in the column.
+ let mut min_var_len = usize::MAX;
+ // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
+ let mut seen_fixed_lens = GrowableBitSet::new_empty();
+ match &mut max_slice {
+ VarLen(max_prefix_len, max_suffix_len) => {
+ // A length larger than any fixed-length slice encountered.
+ // We start at 1 in case the subtype is empty because in that case the zero-length
+ // slice must be treated separately from the rest.
+ let mut fixed_len_upper_bound = 1;
+ // We grow `max_slice` to be larger than all slices encountered, as described above.
+ // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
+ // lengths separate.
+ for slice in column_slices {
+ match slice.kind {
+ FixedLen(len) => {
+ fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
+ seen_fixed_lens.insert(len);
+ }
+ VarLen(prefix, suffix) => {
+ *max_prefix_len = cmp::max(*max_prefix_len, prefix);
+ *max_suffix_len = cmp::max(*max_suffix_len, suffix);
+ min_var_len = cmp::min(min_var_len, prefix + suffix);
+ }
+ }
+ }
+ // If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
+ if let Some(delta) =
+ fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
+ {
+ *max_prefix_len += delta
+ }
+
+ // We cap the arity of `max_slice` at the array size.
+ match self.array_len {
+ Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
+ _ => {}
+ }
+
+ smaller_lengths = match self.array_len {
+ // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
+ // is fixed-length or variable-length, it will be the only relevant slice to output
+ // here.
+ Some(_) => 0..0, // empty range
+ // We need to cover all arities in the range `(arity..infinity)`. We split that
+ // range into two: lengths smaller than `max_slice.arity()` are treated
+ // independently as fixed-lengths slices, and lengths above are captured by
+ // `max_slice`.
+ None => self.arity()..max_slice.arity(),
+ };
+ }
+ FixedLen(_) => {
+ // No need to split here. We only track presence.
+ for slice in column_slices {
+ match slice.kind {
+ FixedLen(len) => {
+ if len == arity {
+ seen_fixed_lens.insert(len);
+ }
+ }
+ VarLen(prefix, suffix) => {
+ min_var_len = cmp::min(min_var_len, prefix + suffix);
+ }
+ }
+ }
+ smaller_lengths = 0..0;
+ }
+ };
+
+ smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
+ let arity = kind.arity();
+ let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
+ Presence::Seen
+ } else {
+ Presence::Unseen
+ };
+ (seen, Slice::new(self.array_len, kind))
+ })
+ }
+}
+
+/// A globally unique id to distinguish `Opaque` patterns.
+#[derive(Clone, Debug, PartialEq, Eq)]
+pub struct OpaqueId(u32);
+
+impl OpaqueId {
+ pub fn new() -> Self {
+ use std::sync::atomic::{AtomicU32, Ordering};
+ static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
+ OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
+ }
+}
+
+/// A value can be decomposed into a constructor applied to some fields. This struct represents
+/// the constructor. See also `Fields`.
+///
+/// `pat_constructor` retrieves the constructor corresponding to a pattern.
+/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
+/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
+/// `Fields`.
+#[derive(Clone, Debug, PartialEq)]
+pub enum Constructor<Cx: TypeCx> {
+ /// Tuples and structs.
+ Struct,
+ /// Enum variants.
+ Variant(Cx::VariantIdx),
+ /// References
+ Ref,
+ /// Array and slice patterns.
+ Slice(Slice),
+ /// Union field accesses.
+ UnionField,
+ /// Booleans
+ Bool(bool),
+ /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
+ IntRange(IntRange),
+ /// Ranges of floating-point literal values (`2.0..=5.2`).
+ F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
+ F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
+ /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
+ Str(Cx::StrLit),
+ /// Constants that must not be matched structurally. They are treated as black boxes for the
+ /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
+ /// match exhaustive.
+ /// Carries an id that must be unique within a match. We need this to ensure the invariants of
+ /// [`SplitConstructorSet`].
+ Opaque(OpaqueId),
+ /// Or-pattern.
+ Or,
+ /// Wildcard pattern.
+ Wildcard,
+ /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
+ /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
+ NonExhaustive,
+ /// Fake extra constructor for variants that should not be mentioned in diagnostics.
+ /// We use this for variants behind an unstable gate as well as
+ /// `#[doc(hidden)]` ones.
+ Hidden,
+ /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
+ /// top of the file.
+ Missing,
+}
+
+impl<Cx: TypeCx> Constructor<Cx> {
+ pub(crate) fn is_non_exhaustive(&self) -> bool {
+ matches!(self, NonExhaustive)
+ }
+
+ pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
+ match self {
+ Variant(i) => Some(*i),
+ _ => None,
+ }
+ }
+ fn as_bool(&self) -> Option<bool> {
+ match self {
+ Bool(b) => Some(*b),
+ _ => None,
+ }
+ }
+ pub(crate) fn as_int_range(&self) -> Option<&IntRange> {
+ match self {
+ IntRange(range) => Some(range),
+ _ => None,
+ }
+ }
+ fn as_slice(&self) -> Option<Slice> {
+ match self {
+ Slice(slice) => Some(*slice),
+ _ => None,
+ }
+ }
+
+ /// The number of fields for this constructor. This must be kept in sync with
+ /// `Fields::wildcards`.
+ pub(crate) fn arity(&self, pcx: &PlaceCtxt<'_, '_, Cx>) -> usize {
+ pcx.ctor_arity(self)
+ }
+
+ /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
+ /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
+ /// this checks for inclusion.
+ // We inline because this has a single call site in `Matrix::specialize_constructor`.
+ #[inline]
+ pub(crate) fn is_covered_by<'p>(&self, pcx: &PlaceCtxt<'_, 'p, Cx>, other: &Self) -> bool {
+ match (self, other) {
+ (Wildcard, _) => pcx
+ .mcx
+ .tycx
+ .bug(format_args!("Constructor splitting should not have returned `Wildcard`")),
+ // Wildcards cover anything
+ (_, Wildcard) => true,
+ // Only a wildcard pattern can match these special constructors.
+ (Missing { .. } | NonExhaustive | Hidden, _) => false,
+
+ (Struct, Struct) => true,
+ (Ref, Ref) => true,
+ (UnionField, UnionField) => true,
+ (Variant(self_id), Variant(other_id)) => self_id == other_id,
+ (Bool(self_b), Bool(other_b)) => self_b == other_b,
+
+ (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
+ (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
+ self_from.ge(other_from)
+ && match self_to.partial_cmp(other_to) {
+ Some(Ordering::Less) => true,
+ Some(Ordering::Equal) => other_end == self_end,
+ _ => false,
+ }
+ }
+ (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
+ self_from.ge(other_from)
+ && match self_to.partial_cmp(other_to) {
+ Some(Ordering::Less) => true,
+ Some(Ordering::Equal) => other_end == self_end,
+ _ => false,
+ }
+ }
+ (Str(self_val), Str(other_val)) => {
+ // FIXME Once valtrees are available we can directly use the bytes
+ // in the `Str` variant of the valtree for the comparison here.
+ self_val == other_val
+ }
+ (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),
+
+ // Opaque constructors don't interact with anything unless they come from the
+ // syntactically identical pattern.
+ (Opaque(self_id), Opaque(other_id)) => self_id == other_id,
+ (Opaque(..), _) | (_, Opaque(..)) => false,
+
+ _ => pcx.mcx.tycx.bug(format_args!(
+ "trying to compare incompatible constructors {self:?} and {other:?}"
+ )),
+ }
+ }
+}
+
+#[derive(Debug, Clone, Copy)]
+pub enum VariantVisibility {
+ /// Variant that doesn't fit the other cases, i.e. most variants.
+ Visible,
+ /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
+ /// mentioned in diagnostics unless the user mentioned it first.
+ Hidden,
+ /// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
+ /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
+ /// it first.
+ Empty,
+}
+
+/// Describes the set of all constructors for a type. For details, in particular about the emptiness
+/// of constructors, see the top of the file.
+///
+/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
+/// `exhaustive_patterns` feature.
+#[derive(Debug)]
+pub enum ConstructorSet<Cx: TypeCx> {
+ /// The type is a tuple or struct. `empty` tracks whether the type is empty.
+ Struct { empty: bool },
+ /// This type has the following list of constructors. If `variants` is empty and
+ /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
+ Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
+ /// The type is `&T`.
+ Ref,
+ /// The type is a union.
+ Union,
+ /// Booleans.
+ Bool,
+ /// The type is spanned by integer values. The range or ranges give the set of allowed values.
+ /// The second range is only useful for `char`.
+ Integers { range_1: IntRange, range_2: Option<IntRange> },
+ /// The type is matched by slices. `array_len` is the compile-time length of the array, if
+ /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
+ /// slice `[]`.
+ Slice { array_len: Option<usize>, subtype_is_empty: bool },
+ /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
+ /// floats.
+ Unlistable,
+ /// The type has no constructors (not even empty ones). This is `!` and empty enums.
+ NoConstructors,
+}
+
+/// Describes the result of analyzing the constructors in a column of a match.
+///
+/// `present` is morally the set of constructors present in the column, and `missing` is the set of
+/// constructors that exist in the type but are not present in the column.
+///
+/// More formally, if we discard wildcards from the column, this respects the following constraints:
+/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
+/// 2. each constructor in `present` is covered by something in the column
+/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
+/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
+/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
+/// the file);
+/// 6. `missing_empty` contains only empty constructors
+/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
+/// words, they are either fully included in or fully disjoint from each constructor in the
+/// column. In yet other words, there are no non-trivial intersections like between `0..10` and
+/// `5..15`.
+///
+/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
+/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
+/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
+#[derive(Debug)]
+pub(crate) struct SplitConstructorSet<Cx: TypeCx> {
+ pub(crate) present: SmallVec<[Constructor<Cx>; 1]>,
+ pub(crate) missing: Vec<Constructor<Cx>>,
+ pub(crate) missing_empty: Vec<Constructor<Cx>>,
+}
+
+impl<Cx: TypeCx> ConstructorSet<Cx> {
+ /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
+ /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
+ /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
+ /// and its invariants.
+ #[instrument(level = "debug", skip(self, pcx, ctors), ret)]
+ pub(crate) fn split<'a>(
+ &self,
+ pcx: &PlaceCtxt<'_, '_, Cx>,
+ ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
+ ) -> SplitConstructorSet<Cx>
+ where
+ Cx: 'a,
+ {
+ let mut present: SmallVec<[_; 1]> = SmallVec::new();
+ // Empty constructors found missing.
+ let mut missing_empty = Vec::new();
+ // Nonempty constructors found missing.
+ let mut missing = Vec::new();
+ // Constructors in `ctors`, except wildcards and opaques.
+ let mut seen = Vec::new();
+ for ctor in ctors.cloned() {
+ match ctor {
+ Opaque(..) => present.push(ctor),
+ Wildcard => {} // discard wildcards
+ _ => seen.push(ctor),
+ }
+ }
+
+ match self {
+ ConstructorSet::Struct { empty } => {
+ if !seen.is_empty() {
+ present.push(Struct);
+ } else if *empty {
+ missing_empty.push(Struct);
+ } else {
+ missing.push(Struct);
+ }
+ }
+ ConstructorSet::Ref => {
+ if !seen.is_empty() {
+ present.push(Ref);
+ } else {
+ missing.push(Ref);
+ }
+ }
+ ConstructorSet::Union => {
+ if !seen.is_empty() {
+ present.push(UnionField);
+ } else {
+ missing.push(UnionField);
+ }
+ }
+ ConstructorSet::Variants { variants, non_exhaustive } => {
+ let mut seen_set: BitSet<_> = BitSet::new_empty(variants.len());
+ for idx in seen.iter().map(|c| c.as_variant().unwrap()) {
+ seen_set.insert(idx);
+ }
+ let mut skipped_a_hidden_variant = false;
+
+ for (idx, visibility) in variants.iter_enumerated() {
+ let ctor = Variant(idx);
+ if seen_set.contains(idx) {
+ present.push(ctor);
+ } else {
+ // We only put visible variants directly into `missing`.
+ match visibility {
+ VariantVisibility::Visible => missing.push(ctor),
+ VariantVisibility::Hidden => skipped_a_hidden_variant = true,
+ VariantVisibility::Empty => missing_empty.push(ctor),
+ }
+ }
+ }
+
+ if skipped_a_hidden_variant {
+ missing.push(Hidden);
+ }
+ if *non_exhaustive {
+ missing.push(NonExhaustive);
+ }
+ }
+ ConstructorSet::Bool => {
+ let mut seen_false = false;
+ let mut seen_true = false;
+ for b in seen.iter().map(|ctor| ctor.as_bool().unwrap()) {
+ if b {
+ seen_true = true;
+ } else {
+ seen_false = true;
+ }
+ }
+ if seen_false {
+ present.push(Bool(false));
+ } else {
+ missing.push(Bool(false));
+ }
+ if seen_true {
+ present.push(Bool(true));
+ } else {
+ missing.push(Bool(true));
+ }
+ }
+ ConstructorSet::Integers { range_1, range_2 } => {
+ let seen_ranges: Vec<_> =
+ seen.iter().map(|ctor| *ctor.as_int_range().unwrap()).collect();
+ for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
+ match seen {
+ Presence::Unseen => missing.push(IntRange(splitted_range)),
+ Presence::Seen => present.push(IntRange(splitted_range)),
+ }
+ }
+ if let Some(range_2) = range_2 {
+ for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
+ match seen {
+ Presence::Unseen => missing.push(IntRange(splitted_range)),
+ Presence::Seen => present.push(IntRange(splitted_range)),
+ }
+ }
+ }
+ }
+ ConstructorSet::Slice { array_len, subtype_is_empty } => {
+ let seen_slices = seen.iter().map(|c| c.as_slice().unwrap());
+ let base_slice = Slice::new(*array_len, VarLen(0, 0));
+ for (seen, splitted_slice) in base_slice.split(seen_slices) {
+ let ctor = Slice(splitted_slice);
+ match seen {
+ Presence::Seen => present.push(ctor),
+ Presence::Unseen => {
+ if *subtype_is_empty && splitted_slice.arity() != 0 {
+ // We have subpatterns of an empty type, so the constructor is
+ // empty.
+ missing_empty.push(ctor);
+ } else {
+ missing.push(ctor);
+ }
+ }
+ }
+ }
+ }
+ ConstructorSet::Unlistable => {
+ // Since we can't list constructors, we take the ones in the column. This might list
+ // some constructors several times but there's not much we can do.
+ present.extend(seen);
+ missing.push(NonExhaustive);
+ }
+ ConstructorSet::NoConstructors => {
+ // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
+ // add a dummy empty constructor here, which will be ignored if the place is
+ // `ValidOnly`.
+ missing_empty.push(NonExhaustive);
+ }
+ }
+
+ // We have now grouped all the constructors into 3 buckets: present, missing, missing_empty.
+ // In the absence of the `exhaustive_patterns` feature however, we don't count nested empty
+ // types as empty. Only non-nested `!` or `enum Foo {}` are considered empty.
+ if !pcx.mcx.tycx.is_exhaustive_patterns_feature_on()
+ && !(pcx.is_scrutinee && matches!(self, Self::NoConstructors))
+ {
+ // Treat all missing constructors as nonempty.
+ // This clears `missing_empty`.
+ missing.append(&mut missing_empty);
+ }
+
+ SplitConstructorSet { present, missing, missing_empty }
+ }
+}