diff options
Diffstat (limited to 'src/backend/storage/ipc/procarray.c')
-rw-r--r-- | src/backend/storage/ipc/procarray.c | 5309 |
1 files changed, 5309 insertions, 0 deletions
diff --git a/src/backend/storage/ipc/procarray.c b/src/backend/storage/ipc/procarray.c new file mode 100644 index 0000000..1623a11 --- /dev/null +++ b/src/backend/storage/ipc/procarray.c @@ -0,0 +1,5309 @@ +/*------------------------------------------------------------------------- + * + * procarray.c + * POSTGRES process array code. + * + * + * This module maintains arrays of PGPROC substructures, as well as associated + * arrays in ProcGlobal, for all active backends. Although there are several + * uses for this, the principal one is as a means of determining the set of + * currently running transactions. + * + * Because of various subtle race conditions it is critical that a backend + * hold the correct locks while setting or clearing its xid (in + * ProcGlobal->xids[]/MyProc->xid). See notes in + * src/backend/access/transam/README. + * + * The process arrays now also include structures representing prepared + * transactions. The xid and subxids fields of these are valid, as are the + * myProcLocks lists. They can be distinguished from regular backend PGPROCs + * at need by checking for pid == 0. + * + * During hot standby, we also keep a list of XIDs representing transactions + * that are known to be running on the primary (or more precisely, were running + * as of the current point in the WAL stream). This list is kept in the + * KnownAssignedXids array, and is updated by watching the sequence of + * arriving XIDs. This is necessary because if we leave those XIDs out of + * snapshots taken for standby queries, then they will appear to be already + * complete, leading to MVCC failures. Note that in hot standby, the PGPROC + * array represents standby processes, which by definition are not running + * transactions that have XIDs. + * + * It is perhaps possible for a backend on the primary to terminate without + * writing an abort record for its transaction. While that shouldn't really + * happen, it would tie up KnownAssignedXids indefinitely, so we protect + * ourselves by pruning the array when a valid list of running XIDs arrives. + * + * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/storage/ipc/procarray.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <signal.h> + +#include "access/clog.h" +#include "access/subtrans.h" +#include "access/transam.h" +#include "access/twophase.h" +#include "access/xact.h" +#include "access/xlogutils.h" +#include "catalog/catalog.h" +#include "catalog/pg_authid.h" +#include "commands/dbcommands.h" +#include "miscadmin.h" +#include "pgstat.h" +#include "storage/proc.h" +#include "storage/procarray.h" +#include "storage/spin.h" +#include "utils/acl.h" +#include "utils/builtins.h" +#include "utils/rel.h" +#include "utils/snapmgr.h" + +#define UINT32_ACCESS_ONCE(var) ((uint32)(*((volatile uint32 *)&(var)))) + +/* Our shared memory area */ +typedef struct ProcArrayStruct +{ + int numProcs; /* number of valid procs entries */ + int maxProcs; /* allocated size of procs array */ + + /* + * Known assigned XIDs handling + */ + int maxKnownAssignedXids; /* allocated size of array */ + int numKnownAssignedXids; /* current # of valid entries */ + int tailKnownAssignedXids; /* index of oldest valid element */ + int headKnownAssignedXids; /* index of newest element, + 1 */ + slock_t known_assigned_xids_lck; /* protects head/tail pointers */ + + /* + * Highest subxid that has been removed from KnownAssignedXids array to + * prevent overflow; or InvalidTransactionId if none. We track this for + * similar reasons to tracking overflowing cached subxids in PGPROC + * entries. Must hold exclusive ProcArrayLock to change this, and shared + * lock to read it. + */ + TransactionId lastOverflowedXid; + + /* oldest xmin of any replication slot */ + TransactionId replication_slot_xmin; + /* oldest catalog xmin of any replication slot */ + TransactionId replication_slot_catalog_xmin; + + /* indexes into allProcs[], has PROCARRAY_MAXPROCS entries */ + int pgprocnos[FLEXIBLE_ARRAY_MEMBER]; +} ProcArrayStruct; + +/* + * State for the GlobalVisTest* family of functions. Those functions can + * e.g. be used to decide if a deleted row can be removed without violating + * MVCC semantics: If the deleted row's xmax is not considered to be running + * by anyone, the row can be removed. + * + * To avoid slowing down GetSnapshotData(), we don't calculate a precise + * cutoff XID while building a snapshot (looking at the frequently changing + * xmins scales badly). Instead we compute two boundaries while building the + * snapshot: + * + * 1) definitely_needed, indicating that rows deleted by XIDs >= + * definitely_needed are definitely still visible. + * + * 2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can + * definitely be removed + * + * When testing an XID that falls in between the two (i.e. XID >= maybe_needed + * && XID < definitely_needed), the boundaries can be recomputed (using + * ComputeXidHorizons()) to get a more accurate answer. This is cheaper than + * maintaining an accurate value all the time. + * + * As it is not cheap to compute accurate boundaries, we limit the number of + * times that happens in short succession. See GlobalVisTestShouldUpdate(). + * + * + * There are three backend lifetime instances of this struct, optimized for + * different types of relations. As e.g. a normal user defined table in one + * database is inaccessible to backends connected to another database, a test + * specific to a relation can be more aggressive than a test for a shared + * relation. Currently we track four different states: + * + * 1) GlobalVisSharedRels, which only considers an XID's + * effects visible-to-everyone if neither snapshots in any database, nor a + * replication slot's xmin, nor a replication slot's catalog_xmin might + * still consider XID as running. + * + * 2) GlobalVisCatalogRels, which only considers an XID's + * effects visible-to-everyone if neither snapshots in the current + * database, nor a replication slot's xmin, nor a replication slot's + * catalog_xmin might still consider XID as running. + * + * I.e. the difference to GlobalVisSharedRels is that + * snapshot in other databases are ignored. + * + * 3) GlobalVisDataRels, which only considers an XID's + * effects visible-to-everyone if neither snapshots in the current + * database, nor a replication slot's xmin consider XID as running. + * + * I.e. the difference to GlobalVisCatalogRels is that + * replication slot's catalog_xmin is not taken into account. + * + * 4) GlobalVisTempRels, which only considers the current session, as temp + * tables are not visible to other sessions. + * + * GlobalVisTestFor(relation) returns the appropriate state + * for the relation. + * + * The boundaries are FullTransactionIds instead of TransactionIds to avoid + * wraparound dangers. There e.g. would otherwise exist no procarray state to + * prevent maybe_needed to become old enough after the GetSnapshotData() + * call. + * + * The typedef is in the header. + */ +struct GlobalVisState +{ + /* XIDs >= are considered running by some backend */ + FullTransactionId definitely_needed; + + /* XIDs < are not considered to be running by any backend */ + FullTransactionId maybe_needed; +}; + +/* + * Result of ComputeXidHorizons(). + */ +typedef struct ComputeXidHorizonsResult +{ + /* + * The value of ShmemVariableCache->latestCompletedXid when + * ComputeXidHorizons() held ProcArrayLock. + */ + FullTransactionId latest_completed; + + /* + * The same for procArray->replication_slot_xmin and. + * procArray->replication_slot_catalog_xmin. + */ + TransactionId slot_xmin; + TransactionId slot_catalog_xmin; + + /* + * Oldest xid that any backend might still consider running. This needs to + * include processes running VACUUM, in contrast to the normal visibility + * cutoffs, as vacuum needs to be able to perform pg_subtrans lookups when + * determining visibility, but doesn't care about rows above its xmin to + * be removed. + * + * This likely should only be needed to determine whether pg_subtrans can + * be truncated. It currently includes the effects of replication slots, + * for historical reasons. But that could likely be changed. + */ + TransactionId oldest_considered_running; + + /* + * Oldest xid for which deleted tuples need to be retained in shared + * tables. + * + * This includes the effects of replication slots. If that's not desired, + * look at shared_oldest_nonremovable_raw; + */ + TransactionId shared_oldest_nonremovable; + + /* + * Oldest xid that may be necessary to retain in shared tables. This is + * the same as shared_oldest_nonremovable, except that is not affected by + * replication slot's catalog_xmin. + * + * This is mainly useful to be able to send the catalog_xmin to upstream + * streaming replication servers via hot_standby_feedback, so they can + * apply the limit only when accessing catalog tables. + */ + TransactionId shared_oldest_nonremovable_raw; + + /* + * Oldest xid for which deleted tuples need to be retained in non-shared + * catalog tables. + */ + TransactionId catalog_oldest_nonremovable; + + /* + * Oldest xid for which deleted tuples need to be retained in normal user + * defined tables. + */ + TransactionId data_oldest_nonremovable; + + /* + * Oldest xid for which deleted tuples need to be retained in this + * session's temporary tables. + */ + TransactionId temp_oldest_nonremovable; +} ComputeXidHorizonsResult; + +/* + * Return value for GlobalVisHorizonKindForRel(). + */ +typedef enum GlobalVisHorizonKind +{ + VISHORIZON_SHARED, + VISHORIZON_CATALOG, + VISHORIZON_DATA, + VISHORIZON_TEMP +} GlobalVisHorizonKind; + +/* + * Reason codes for KnownAssignedXidsCompress(). + */ +typedef enum KAXCompressReason +{ + KAX_NO_SPACE, /* need to free up space at array end */ + KAX_PRUNE, /* we just pruned old entries */ + KAX_TRANSACTION_END, /* we just committed/removed some XIDs */ + KAX_STARTUP_PROCESS_IDLE /* startup process is about to sleep */ +} KAXCompressReason; + + +static ProcArrayStruct *procArray; + +static PGPROC *allProcs; + +/* + * Cache to reduce overhead of repeated calls to TransactionIdIsInProgress() + */ +static TransactionId cachedXidIsNotInProgress = InvalidTransactionId; + +/* + * Bookkeeping for tracking emulated transactions in recovery + */ +static TransactionId *KnownAssignedXids; +static bool *KnownAssignedXidsValid; +static TransactionId latestObservedXid = InvalidTransactionId; + +/* + * If we're in STANDBY_SNAPSHOT_PENDING state, standbySnapshotPendingXmin is + * the highest xid that might still be running that we don't have in + * KnownAssignedXids. + */ +static TransactionId standbySnapshotPendingXmin; + +/* + * State for visibility checks on different types of relations. See struct + * GlobalVisState for details. As shared, catalog, normal and temporary + * relations can have different horizons, one such state exists for each. + */ +static GlobalVisState GlobalVisSharedRels; +static GlobalVisState GlobalVisCatalogRels; +static GlobalVisState GlobalVisDataRels; +static GlobalVisState GlobalVisTempRels; + +/* + * This backend's RecentXmin at the last time the accurate xmin horizon was + * recomputed, or InvalidTransactionId if it has not. Used to limit how many + * times accurate horizons are recomputed. See GlobalVisTestShouldUpdate(). + */ +static TransactionId ComputeXidHorizonsResultLastXmin; + +#ifdef XIDCACHE_DEBUG + +/* counters for XidCache measurement */ +static long xc_by_recent_xmin = 0; +static long xc_by_known_xact = 0; +static long xc_by_my_xact = 0; +static long xc_by_latest_xid = 0; +static long xc_by_main_xid = 0; +static long xc_by_child_xid = 0; +static long xc_by_known_assigned = 0; +static long xc_no_overflow = 0; +static long xc_slow_answer = 0; + +#define xc_by_recent_xmin_inc() (xc_by_recent_xmin++) +#define xc_by_known_xact_inc() (xc_by_known_xact++) +#define xc_by_my_xact_inc() (xc_by_my_xact++) +#define xc_by_latest_xid_inc() (xc_by_latest_xid++) +#define xc_by_main_xid_inc() (xc_by_main_xid++) +#define xc_by_child_xid_inc() (xc_by_child_xid++) +#define xc_by_known_assigned_inc() (xc_by_known_assigned++) +#define xc_no_overflow_inc() (xc_no_overflow++) +#define xc_slow_answer_inc() (xc_slow_answer++) + +static void DisplayXidCache(void); +#else /* !XIDCACHE_DEBUG */ + +#define xc_by_recent_xmin_inc() ((void) 0) +#define xc_by_known_xact_inc() ((void) 0) +#define xc_by_my_xact_inc() ((void) 0) +#define xc_by_latest_xid_inc() ((void) 0) +#define xc_by_main_xid_inc() ((void) 0) +#define xc_by_child_xid_inc() ((void) 0) +#define xc_by_known_assigned_inc() ((void) 0) +#define xc_no_overflow_inc() ((void) 0) +#define xc_slow_answer_inc() ((void) 0) +#endif /* XIDCACHE_DEBUG */ + +/* Primitives for KnownAssignedXids array handling for standby */ +static void KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock); +static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid, + bool exclusive_lock); +static bool KnownAssignedXidsSearch(TransactionId xid, bool remove); +static bool KnownAssignedXidExists(TransactionId xid); +static void KnownAssignedXidsRemove(TransactionId xid); +static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids, + TransactionId *subxids); +static void KnownAssignedXidsRemovePreceding(TransactionId xid); +static int KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax); +static int KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, + TransactionId *xmin, + TransactionId xmax); +static TransactionId KnownAssignedXidsGetOldestXmin(void); +static void KnownAssignedXidsDisplay(int trace_level); +static void KnownAssignedXidsReset(void); +static inline void ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid); +static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid); +static void MaintainLatestCompletedXid(TransactionId latestXid); +static void MaintainLatestCompletedXidRecovery(TransactionId latestXid); +static void TransactionIdRetreatSafely(TransactionId *xid, + int retreat_by, + FullTransactionId rel); + +static inline FullTransactionId FullXidRelativeTo(FullTransactionId rel, + TransactionId xid); +static void GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons); + +/* + * Report shared-memory space needed by CreateSharedProcArray. + */ +Size +ProcArrayShmemSize(void) +{ + Size size; + + /* Size of the ProcArray structure itself */ +#define PROCARRAY_MAXPROCS (MaxBackends + max_prepared_xacts) + + size = offsetof(ProcArrayStruct, pgprocnos); + size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS)); + + /* + * During Hot Standby processing we have a data structure called + * KnownAssignedXids, created in shared memory. Local data structures are + * also created in various backends during GetSnapshotData(), + * TransactionIdIsInProgress() and GetRunningTransactionData(). All of the + * main structures created in those functions must be identically sized, + * since we may at times copy the whole of the data structures around. We + * refer to this size as TOTAL_MAX_CACHED_SUBXIDS. + * + * Ideally we'd only create this structure if we were actually doing hot + * standby in the current run, but we don't know that yet at the time + * shared memory is being set up. + */ +#define TOTAL_MAX_CACHED_SUBXIDS \ + ((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS) + + if (EnableHotStandby) + { + size = add_size(size, + mul_size(sizeof(TransactionId), + TOTAL_MAX_CACHED_SUBXIDS)); + size = add_size(size, + mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS)); + } + + return size; +} + +/* + * Initialize the shared PGPROC array during postmaster startup. + */ +void +CreateSharedProcArray(void) +{ + bool found; + + /* Create or attach to the ProcArray shared structure */ + procArray = (ProcArrayStruct *) + ShmemInitStruct("Proc Array", + add_size(offsetof(ProcArrayStruct, pgprocnos), + mul_size(sizeof(int), + PROCARRAY_MAXPROCS)), + &found); + + if (!found) + { + /* + * We're the first - initialize. + */ + procArray->numProcs = 0; + procArray->maxProcs = PROCARRAY_MAXPROCS; + procArray->maxKnownAssignedXids = TOTAL_MAX_CACHED_SUBXIDS; + procArray->numKnownAssignedXids = 0; + procArray->tailKnownAssignedXids = 0; + procArray->headKnownAssignedXids = 0; + SpinLockInit(&procArray->known_assigned_xids_lck); + procArray->lastOverflowedXid = InvalidTransactionId; + procArray->replication_slot_xmin = InvalidTransactionId; + procArray->replication_slot_catalog_xmin = InvalidTransactionId; + ShmemVariableCache->xactCompletionCount = 1; + } + + allProcs = ProcGlobal->allProcs; + + /* Create or attach to the KnownAssignedXids arrays too, if needed */ + if (EnableHotStandby) + { + KnownAssignedXids = (TransactionId *) + ShmemInitStruct("KnownAssignedXids", + mul_size(sizeof(TransactionId), + TOTAL_MAX_CACHED_SUBXIDS), + &found); + KnownAssignedXidsValid = (bool *) + ShmemInitStruct("KnownAssignedXidsValid", + mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS), + &found); + } +} + +/* + * Add the specified PGPROC to the shared array. + */ +void +ProcArrayAdd(PGPROC *proc) +{ + ProcArrayStruct *arrayP = procArray; + int index; + int movecount; + + /* See ProcGlobal comment explaining why both locks are held */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + LWLockAcquire(XidGenLock, LW_EXCLUSIVE); + + if (arrayP->numProcs >= arrayP->maxProcs) + { + /* + * Oops, no room. (This really shouldn't happen, since there is a + * fixed supply of PGPROC structs too, and so we should have failed + * earlier.) + */ + ereport(FATAL, + (errcode(ERRCODE_TOO_MANY_CONNECTIONS), + errmsg("sorry, too many clients already"))); + } + + /* + * Keep the procs array sorted by (PGPROC *) so that we can utilize + * locality of references much better. This is useful while traversing the + * ProcArray because there is an increased likelihood of finding the next + * PGPROC structure in the cache. + * + * Since the occurrence of adding/removing a proc is much lower than the + * access to the ProcArray itself, the overhead should be marginal + */ + for (index = 0; index < arrayP->numProcs; index++) + { + int procno PG_USED_FOR_ASSERTS_ONLY = arrayP->pgprocnos[index]; + + Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS)); + Assert(allProcs[procno].pgxactoff == index); + + /* If we have found our right position in the array, break */ + if (arrayP->pgprocnos[index] > proc->pgprocno) + break; + } + + movecount = arrayP->numProcs - index; + memmove(&arrayP->pgprocnos[index + 1], + &arrayP->pgprocnos[index], + movecount * sizeof(*arrayP->pgprocnos)); + memmove(&ProcGlobal->xids[index + 1], + &ProcGlobal->xids[index], + movecount * sizeof(*ProcGlobal->xids)); + memmove(&ProcGlobal->subxidStates[index + 1], + &ProcGlobal->subxidStates[index], + movecount * sizeof(*ProcGlobal->subxidStates)); + memmove(&ProcGlobal->statusFlags[index + 1], + &ProcGlobal->statusFlags[index], + movecount * sizeof(*ProcGlobal->statusFlags)); + + arrayP->pgprocnos[index] = proc->pgprocno; + proc->pgxactoff = index; + ProcGlobal->xids[index] = proc->xid; + ProcGlobal->subxidStates[index] = proc->subxidStatus; + ProcGlobal->statusFlags[index] = proc->statusFlags; + + arrayP->numProcs++; + + /* adjust pgxactoff for all following PGPROCs */ + index++; + for (; index < arrayP->numProcs; index++) + { + int procno = arrayP->pgprocnos[index]; + + Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS)); + Assert(allProcs[procno].pgxactoff == index - 1); + + allProcs[procno].pgxactoff = index; + } + + /* + * Release in reversed acquisition order, to reduce frequency of having to + * wait for XidGenLock while holding ProcArrayLock. + */ + LWLockRelease(XidGenLock); + LWLockRelease(ProcArrayLock); +} + +/* + * Remove the specified PGPROC from the shared array. + * + * When latestXid is a valid XID, we are removing a live 2PC gxact from the + * array, and thus causing it to appear as "not running" anymore. In this + * case we must advance latestCompletedXid. (This is essentially the same + * as ProcArrayEndTransaction followed by removal of the PGPROC, but we take + * the ProcArrayLock only once, and don't damage the content of the PGPROC; + * twophase.c depends on the latter.) + */ +void +ProcArrayRemove(PGPROC *proc, TransactionId latestXid) +{ + ProcArrayStruct *arrayP = procArray; + int myoff; + int movecount; + +#ifdef XIDCACHE_DEBUG + /* dump stats at backend shutdown, but not prepared-xact end */ + if (proc->pid != 0) + DisplayXidCache(); +#endif + + /* See ProcGlobal comment explaining why both locks are held */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + LWLockAcquire(XidGenLock, LW_EXCLUSIVE); + + myoff = proc->pgxactoff; + + Assert(myoff >= 0 && myoff < arrayP->numProcs); + Assert(ProcGlobal->allProcs[arrayP->pgprocnos[myoff]].pgxactoff == myoff); + + if (TransactionIdIsValid(latestXid)) + { + Assert(TransactionIdIsValid(ProcGlobal->xids[myoff])); + + /* Advance global latestCompletedXid while holding the lock */ + MaintainLatestCompletedXid(latestXid); + + /* Same with xactCompletionCount */ + ShmemVariableCache->xactCompletionCount++; + + ProcGlobal->xids[myoff] = InvalidTransactionId; + ProcGlobal->subxidStates[myoff].overflowed = false; + ProcGlobal->subxidStates[myoff].count = 0; + } + else + { + /* Shouldn't be trying to remove a live transaction here */ + Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff])); + } + + Assert(!TransactionIdIsValid(ProcGlobal->xids[myoff])); + Assert(ProcGlobal->subxidStates[myoff].count == 0); + Assert(ProcGlobal->subxidStates[myoff].overflowed == false); + + ProcGlobal->statusFlags[myoff] = 0; + + /* Keep the PGPROC array sorted. See notes above */ + movecount = arrayP->numProcs - myoff - 1; + memmove(&arrayP->pgprocnos[myoff], + &arrayP->pgprocnos[myoff + 1], + movecount * sizeof(*arrayP->pgprocnos)); + memmove(&ProcGlobal->xids[myoff], + &ProcGlobal->xids[myoff + 1], + movecount * sizeof(*ProcGlobal->xids)); + memmove(&ProcGlobal->subxidStates[myoff], + &ProcGlobal->subxidStates[myoff + 1], + movecount * sizeof(*ProcGlobal->subxidStates)); + memmove(&ProcGlobal->statusFlags[myoff], + &ProcGlobal->statusFlags[myoff + 1], + movecount * sizeof(*ProcGlobal->statusFlags)); + + arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */ + arrayP->numProcs--; + + /* + * Adjust pgxactoff of following procs for removed PGPROC (note that + * numProcs already has been decremented). + */ + for (int index = myoff; index < arrayP->numProcs; index++) + { + int procno = arrayP->pgprocnos[index]; + + Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS)); + Assert(allProcs[procno].pgxactoff - 1 == index); + + allProcs[procno].pgxactoff = index; + } + + /* + * Release in reversed acquisition order, to reduce frequency of having to + * wait for XidGenLock while holding ProcArrayLock. + */ + LWLockRelease(XidGenLock); + LWLockRelease(ProcArrayLock); +} + + +/* + * ProcArrayEndTransaction -- mark a transaction as no longer running + * + * This is used interchangeably for commit and abort cases. The transaction + * commit/abort must already be reported to WAL and pg_xact. + * + * proc is currently always MyProc, but we pass it explicitly for flexibility. + * latestXid is the latest Xid among the transaction's main XID and + * subtransactions, or InvalidTransactionId if it has no XID. (We must ask + * the caller to pass latestXid, instead of computing it from the PGPROC's + * contents, because the subxid information in the PGPROC might be + * incomplete.) + */ +void +ProcArrayEndTransaction(PGPROC *proc, TransactionId latestXid) +{ + if (TransactionIdIsValid(latestXid)) + { + /* + * We must lock ProcArrayLock while clearing our advertised XID, so + * that we do not exit the set of "running" transactions while someone + * else is taking a snapshot. See discussion in + * src/backend/access/transam/README. + */ + Assert(TransactionIdIsValid(proc->xid)); + + /* + * If we can immediately acquire ProcArrayLock, we clear our own XID + * and release the lock. If not, use group XID clearing to improve + * efficiency. + */ + if (LWLockConditionalAcquire(ProcArrayLock, LW_EXCLUSIVE)) + { + ProcArrayEndTransactionInternal(proc, latestXid); + LWLockRelease(ProcArrayLock); + } + else + ProcArrayGroupClearXid(proc, latestXid); + } + else + { + /* + * If we have no XID, we don't need to lock, since we won't affect + * anyone else's calculation of a snapshot. We might change their + * estimate of global xmin, but that's OK. + */ + Assert(!TransactionIdIsValid(proc->xid)); + Assert(proc->subxidStatus.count == 0); + Assert(!proc->subxidStatus.overflowed); + + proc->lxid = InvalidLocalTransactionId; + proc->xmin = InvalidTransactionId; + + /* be sure this is cleared in abort */ + proc->delayChkptFlags = 0; + + proc->recoveryConflictPending = false; + + /* must be cleared with xid/xmin: */ + /* avoid unnecessarily dirtying shared cachelines */ + if (proc->statusFlags & PROC_VACUUM_STATE_MASK) + { + Assert(!LWLockHeldByMe(ProcArrayLock)); + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + Assert(proc->statusFlags == ProcGlobal->statusFlags[proc->pgxactoff]); + proc->statusFlags &= ~PROC_VACUUM_STATE_MASK; + ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags; + LWLockRelease(ProcArrayLock); + } + } +} + +/* + * Mark a write transaction as no longer running. + * + * We don't do any locking here; caller must handle that. + */ +static inline void +ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid) +{ + int pgxactoff = proc->pgxactoff; + + /* + * Note: we need exclusive lock here because we're going to change other + * processes' PGPROC entries. + */ + Assert(LWLockHeldByMeInMode(ProcArrayLock, LW_EXCLUSIVE)); + Assert(TransactionIdIsValid(ProcGlobal->xids[pgxactoff])); + Assert(ProcGlobal->xids[pgxactoff] == proc->xid); + + ProcGlobal->xids[pgxactoff] = InvalidTransactionId; + proc->xid = InvalidTransactionId; + proc->lxid = InvalidLocalTransactionId; + proc->xmin = InvalidTransactionId; + + /* be sure this is cleared in abort */ + proc->delayChkptFlags = 0; + + proc->recoveryConflictPending = false; + + /* must be cleared with xid/xmin: */ + /* avoid unnecessarily dirtying shared cachelines */ + if (proc->statusFlags & PROC_VACUUM_STATE_MASK) + { + proc->statusFlags &= ~PROC_VACUUM_STATE_MASK; + ProcGlobal->statusFlags[proc->pgxactoff] = proc->statusFlags; + } + + /* Clear the subtransaction-XID cache too while holding the lock */ + Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count && + ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed); + if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed) + { + ProcGlobal->subxidStates[pgxactoff].count = 0; + ProcGlobal->subxidStates[pgxactoff].overflowed = false; + proc->subxidStatus.count = 0; + proc->subxidStatus.overflowed = false; + } + + /* Also advance global latestCompletedXid while holding the lock */ + MaintainLatestCompletedXid(latestXid); + + /* Same with xactCompletionCount */ + ShmemVariableCache->xactCompletionCount++; +} + +/* + * ProcArrayGroupClearXid -- group XID clearing + * + * When we cannot immediately acquire ProcArrayLock in exclusive mode at + * commit time, add ourselves to a list of processes that need their XIDs + * cleared. The first process to add itself to the list will acquire + * ProcArrayLock in exclusive mode and perform ProcArrayEndTransactionInternal + * on behalf of all group members. This avoids a great deal of contention + * around ProcArrayLock when many processes are trying to commit at once, + * since the lock need not be repeatedly handed off from one committing + * process to the next. + */ +static void +ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid) +{ + PROC_HDR *procglobal = ProcGlobal; + uint32 nextidx; + uint32 wakeidx; + + /* We should definitely have an XID to clear. */ + Assert(TransactionIdIsValid(proc->xid)); + + /* Add ourselves to the list of processes needing a group XID clear. */ + proc->procArrayGroupMember = true; + proc->procArrayGroupMemberXid = latestXid; + nextidx = pg_atomic_read_u32(&procglobal->procArrayGroupFirst); + while (true) + { + pg_atomic_write_u32(&proc->procArrayGroupNext, nextidx); + + if (pg_atomic_compare_exchange_u32(&procglobal->procArrayGroupFirst, + &nextidx, + (uint32) proc->pgprocno)) + break; + } + + /* + * If the list was not empty, the leader will clear our XID. It is + * impossible to have followers without a leader because the first process + * that has added itself to the list will always have nextidx as + * INVALID_PGPROCNO. + */ + if (nextidx != INVALID_PGPROCNO) + { + int extraWaits = 0; + + /* Sleep until the leader clears our XID. */ + pgstat_report_wait_start(WAIT_EVENT_PROCARRAY_GROUP_UPDATE); + for (;;) + { + /* acts as a read barrier */ + PGSemaphoreLock(proc->sem); + if (!proc->procArrayGroupMember) + break; + extraWaits++; + } + pgstat_report_wait_end(); + + Assert(pg_atomic_read_u32(&proc->procArrayGroupNext) == INVALID_PGPROCNO); + + /* Fix semaphore count for any absorbed wakeups */ + while (extraWaits-- > 0) + PGSemaphoreUnlock(proc->sem); + return; + } + + /* We are the leader. Acquire the lock on behalf of everyone. */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + /* + * Now that we've got the lock, clear the list of processes waiting for + * group XID clearing, saving a pointer to the head of the list. Trying + * to pop elements one at a time could lead to an ABA problem. + */ + nextidx = pg_atomic_exchange_u32(&procglobal->procArrayGroupFirst, + INVALID_PGPROCNO); + + /* Remember head of list so we can perform wakeups after dropping lock. */ + wakeidx = nextidx; + + /* Walk the list and clear all XIDs. */ + while (nextidx != INVALID_PGPROCNO) + { + PGPROC *nextproc = &allProcs[nextidx]; + + ProcArrayEndTransactionInternal(nextproc, nextproc->procArrayGroupMemberXid); + + /* Move to next proc in list. */ + nextidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext); + } + + /* We're done with the lock now. */ + LWLockRelease(ProcArrayLock); + + /* + * Now that we've released the lock, go back and wake everybody up. We + * don't do this under the lock so as to keep lock hold times to a + * minimum. The system calls we need to perform to wake other processes + * up are probably much slower than the simple memory writes we did while + * holding the lock. + */ + while (wakeidx != INVALID_PGPROCNO) + { + PGPROC *nextproc = &allProcs[wakeidx]; + + wakeidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext); + pg_atomic_write_u32(&nextproc->procArrayGroupNext, INVALID_PGPROCNO); + + /* ensure all previous writes are visible before follower continues. */ + pg_write_barrier(); + + nextproc->procArrayGroupMember = false; + + if (nextproc != MyProc) + PGSemaphoreUnlock(nextproc->sem); + } +} + +/* + * ProcArrayClearTransaction -- clear the transaction fields + * + * This is used after successfully preparing a 2-phase transaction. We are + * not actually reporting the transaction's XID as no longer running --- it + * will still appear as running because the 2PC's gxact is in the ProcArray + * too. We just have to clear out our own PGPROC. + */ +void +ProcArrayClearTransaction(PGPROC *proc) +{ + int pgxactoff; + + /* + * Currently we need to lock ProcArrayLock exclusively here, as we + * increment xactCompletionCount below. We also need it at least in shared + * mode for pgproc->pgxactoff to stay the same below. + * + * We could however, as this action does not actually change anyone's view + * of the set of running XIDs (our entry is duplicate with the gxact that + * has already been inserted into the ProcArray), lower the lock level to + * shared if we were to make xactCompletionCount an atomic variable. But + * that doesn't seem worth it currently, as a 2PC commit is heavyweight + * enough for this not to be the bottleneck. If it ever becomes a + * bottleneck it may also be worth considering to combine this with the + * subsequent ProcArrayRemove() + */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + pgxactoff = proc->pgxactoff; + + ProcGlobal->xids[pgxactoff] = InvalidTransactionId; + proc->xid = InvalidTransactionId; + + proc->lxid = InvalidLocalTransactionId; + proc->xmin = InvalidTransactionId; + proc->recoveryConflictPending = false; + + Assert(!(proc->statusFlags & PROC_VACUUM_STATE_MASK)); + Assert(!proc->delayChkptFlags); + + /* + * Need to increment completion count even though transaction hasn't + * really committed yet. The reason for that is that GetSnapshotData() + * omits the xid of the current transaction, thus without the increment we + * otherwise could end up reusing the snapshot later. Which would be bad, + * because it might not count the prepared transaction as running. + */ + ShmemVariableCache->xactCompletionCount++; + + /* Clear the subtransaction-XID cache too */ + Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count && + ProcGlobal->subxidStates[pgxactoff].overflowed == proc->subxidStatus.overflowed); + if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed) + { + ProcGlobal->subxidStates[pgxactoff].count = 0; + ProcGlobal->subxidStates[pgxactoff].overflowed = false; + proc->subxidStatus.count = 0; + proc->subxidStatus.overflowed = false; + } + + LWLockRelease(ProcArrayLock); +} + +/* + * Update ShmemVariableCache->latestCompletedXid to point to latestXid if + * currently older. + */ +static void +MaintainLatestCompletedXid(TransactionId latestXid) +{ + FullTransactionId cur_latest = ShmemVariableCache->latestCompletedXid; + + Assert(FullTransactionIdIsValid(cur_latest)); + Assert(!RecoveryInProgress()); + Assert(LWLockHeldByMe(ProcArrayLock)); + + if (TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid)) + { + ShmemVariableCache->latestCompletedXid = + FullXidRelativeTo(cur_latest, latestXid); + } + + Assert(IsBootstrapProcessingMode() || + FullTransactionIdIsNormal(ShmemVariableCache->latestCompletedXid)); +} + +/* + * Same as MaintainLatestCompletedXid, except for use during WAL replay. + */ +static void +MaintainLatestCompletedXidRecovery(TransactionId latestXid) +{ + FullTransactionId cur_latest = ShmemVariableCache->latestCompletedXid; + FullTransactionId rel; + + Assert(AmStartupProcess() || !IsUnderPostmaster); + Assert(LWLockHeldByMe(ProcArrayLock)); + + /* + * Need a FullTransactionId to compare latestXid with. Can't rely on + * latestCompletedXid to be initialized in recovery. But in recovery it's + * safe to access nextXid without a lock for the startup process. + */ + rel = ShmemVariableCache->nextXid; + Assert(FullTransactionIdIsValid(ShmemVariableCache->nextXid)); + + if (!FullTransactionIdIsValid(cur_latest) || + TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid)) + { + ShmemVariableCache->latestCompletedXid = + FullXidRelativeTo(rel, latestXid); + } + + Assert(FullTransactionIdIsNormal(ShmemVariableCache->latestCompletedXid)); +} + +/* + * ProcArrayInitRecovery -- initialize recovery xid mgmt environment + * + * Remember up to where the startup process initialized the CLOG and subtrans + * so we can ensure it's initialized gaplessly up to the point where necessary + * while in recovery. + */ +void +ProcArrayInitRecovery(TransactionId initializedUptoXID) +{ + Assert(standbyState == STANDBY_INITIALIZED); + Assert(TransactionIdIsNormal(initializedUptoXID)); + + /* + * we set latestObservedXid to the xid SUBTRANS has been initialized up + * to, so we can extend it from that point onwards in + * RecordKnownAssignedTransactionIds, and when we get consistent in + * ProcArrayApplyRecoveryInfo(). + */ + latestObservedXid = initializedUptoXID; + TransactionIdRetreat(latestObservedXid); +} + +/* + * ProcArrayApplyRecoveryInfo -- apply recovery info about xids + * + * Takes us through 3 states: Initialized, Pending and Ready. + * Normal case is to go all the way to Ready straight away, though there + * are atypical cases where we need to take it in steps. + * + * Use the data about running transactions on the primary to create the initial + * state of KnownAssignedXids. We also use these records to regularly prune + * KnownAssignedXids because we know it is possible that some transactions + * with FATAL errors fail to write abort records, which could cause eventual + * overflow. + * + * See comments for LogStandbySnapshot(). + */ +void +ProcArrayApplyRecoveryInfo(RunningTransactions running) +{ + TransactionId *xids; + int nxids; + int i; + + Assert(standbyState >= STANDBY_INITIALIZED); + Assert(TransactionIdIsValid(running->nextXid)); + Assert(TransactionIdIsValid(running->oldestRunningXid)); + Assert(TransactionIdIsNormal(running->latestCompletedXid)); + + /* + * Remove stale transactions, if any. + */ + ExpireOldKnownAssignedTransactionIds(running->oldestRunningXid); + + /* + * Remove stale locks, if any. + */ + StandbyReleaseOldLocks(running->oldestRunningXid); + + /* + * If our snapshot is already valid, nothing else to do... + */ + if (standbyState == STANDBY_SNAPSHOT_READY) + return; + + /* + * If our initial RunningTransactionsData had an overflowed snapshot then + * we knew we were missing some subxids from our snapshot. If we continue + * to see overflowed snapshots then we might never be able to start up, so + * we make another test to see if our snapshot is now valid. We know that + * the missing subxids are equal to or earlier than nextXid. After we + * initialise we continue to apply changes during recovery, so once the + * oldestRunningXid is later than the nextXid from the initial snapshot we + * know that we no longer have missing information and can mark the + * snapshot as valid. + */ + if (standbyState == STANDBY_SNAPSHOT_PENDING) + { + /* + * If the snapshot isn't overflowed or if its empty we can reset our + * pending state and use this snapshot instead. + */ + if (!running->subxid_overflow || running->xcnt == 0) + { + /* + * If we have already collected known assigned xids, we need to + * throw them away before we apply the recovery snapshot. + */ + KnownAssignedXidsReset(); + standbyState = STANDBY_INITIALIZED; + } + else + { + if (TransactionIdPrecedes(standbySnapshotPendingXmin, + running->oldestRunningXid)) + { + standbyState = STANDBY_SNAPSHOT_READY; + elog(trace_recovery(DEBUG1), + "recovery snapshots are now enabled"); + } + else + elog(trace_recovery(DEBUG1), + "recovery snapshot waiting for non-overflowed snapshot or " + "until oldest active xid on standby is at least %u (now %u)", + standbySnapshotPendingXmin, + running->oldestRunningXid); + return; + } + } + + Assert(standbyState == STANDBY_INITIALIZED); + + /* + * NB: this can be reached at least twice, so make sure new code can deal + * with that. + */ + + /* + * Nobody else is running yet, but take locks anyhow + */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + /* + * KnownAssignedXids is sorted so we cannot just add the xids, we have to + * sort them first. + * + * Some of the new xids are top-level xids and some are subtransactions. + * We don't call SubTransSetParent because it doesn't matter yet. If we + * aren't overflowed then all xids will fit in snapshot and so we don't + * need subtrans. If we later overflow, an xid assignment record will add + * xids to subtrans. If RunningTransactionsData is overflowed then we + * don't have enough information to correctly update subtrans anyway. + */ + + /* + * Allocate a temporary array to avoid modifying the array passed as + * argument. + */ + xids = palloc(sizeof(TransactionId) * (running->xcnt + running->subxcnt)); + + /* + * Add to the temp array any xids which have not already completed. + */ + nxids = 0; + for (i = 0; i < running->xcnt + running->subxcnt; i++) + { + TransactionId xid = running->xids[i]; + + /* + * The running-xacts snapshot can contain xids that were still visible + * in the procarray when the snapshot was taken, but were already + * WAL-logged as completed. They're not running anymore, so ignore + * them. + */ + if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid)) + continue; + + xids[nxids++] = xid; + } + + if (nxids > 0) + { + if (procArray->numKnownAssignedXids != 0) + { + LWLockRelease(ProcArrayLock); + elog(ERROR, "KnownAssignedXids is not empty"); + } + + /* + * Sort the array so that we can add them safely into + * KnownAssignedXids. + * + * We have to sort them logically, because in KnownAssignedXidsAdd we + * call TransactionIdFollowsOrEquals and so on. But we know these XIDs + * come from RUNNING_XACTS, which means there are only normal XIDs + * from the same epoch, so this is safe. + */ + qsort(xids, nxids, sizeof(TransactionId), xidLogicalComparator); + + /* + * Add the sorted snapshot into KnownAssignedXids. The running-xacts + * snapshot may include duplicated xids because of prepared + * transactions, so ignore them. + */ + for (i = 0; i < nxids; i++) + { + if (i > 0 && TransactionIdEquals(xids[i - 1], xids[i])) + { + elog(DEBUG1, + "found duplicated transaction %u for KnownAssignedXids insertion", + xids[i]); + continue; + } + KnownAssignedXidsAdd(xids[i], xids[i], true); + } + + KnownAssignedXidsDisplay(trace_recovery(DEBUG3)); + } + + pfree(xids); + + /* + * latestObservedXid is at least set to the point where SUBTRANS was + * started up to (cf. ProcArrayInitRecovery()) or to the biggest xid + * RecordKnownAssignedTransactionIds() was called for. Initialize + * subtrans from thereon, up to nextXid - 1. + * + * We need to duplicate parts of RecordKnownAssignedTransactionId() here, + * because we've just added xids to the known assigned xids machinery that + * haven't gone through RecordKnownAssignedTransactionId(). + */ + Assert(TransactionIdIsNormal(latestObservedXid)); + TransactionIdAdvance(latestObservedXid); + while (TransactionIdPrecedes(latestObservedXid, running->nextXid)) + { + ExtendSUBTRANS(latestObservedXid); + TransactionIdAdvance(latestObservedXid); + } + TransactionIdRetreat(latestObservedXid); /* = running->nextXid - 1 */ + + /* ---------- + * Now we've got the running xids we need to set the global values that + * are used to track snapshots as they evolve further. + * + * - latestCompletedXid which will be the xmax for snapshots + * - lastOverflowedXid which shows whether snapshots overflow + * - nextXid + * + * If the snapshot overflowed, then we still initialise with what we know, + * but the recovery snapshot isn't fully valid yet because we know there + * are some subxids missing. We don't know the specific subxids that are + * missing, so conservatively assume the last one is latestObservedXid. + * ---------- + */ + if (running->subxid_overflow) + { + standbyState = STANDBY_SNAPSHOT_PENDING; + + standbySnapshotPendingXmin = latestObservedXid; + procArray->lastOverflowedXid = latestObservedXid; + } + else + { + standbyState = STANDBY_SNAPSHOT_READY; + + standbySnapshotPendingXmin = InvalidTransactionId; + } + + /* + * If a transaction wrote a commit record in the gap between taking and + * logging the snapshot then latestCompletedXid may already be higher than + * the value from the snapshot, so check before we use the incoming value. + * It also might not yet be set at all. + */ + MaintainLatestCompletedXidRecovery(running->latestCompletedXid); + + /* + * NB: No need to increment ShmemVariableCache->xactCompletionCount here, + * nobody can see it yet. + */ + + LWLockRelease(ProcArrayLock); + + /* ShmemVariableCache->nextXid must be beyond any observed xid. */ + AdvanceNextFullTransactionIdPastXid(latestObservedXid); + + Assert(FullTransactionIdIsValid(ShmemVariableCache->nextXid)); + + KnownAssignedXidsDisplay(trace_recovery(DEBUG3)); + if (standbyState == STANDBY_SNAPSHOT_READY) + elog(trace_recovery(DEBUG1), "recovery snapshots are now enabled"); + else + elog(trace_recovery(DEBUG1), + "recovery snapshot waiting for non-overflowed snapshot or " + "until oldest active xid on standby is at least %u (now %u)", + standbySnapshotPendingXmin, + running->oldestRunningXid); +} + +/* + * ProcArrayApplyXidAssignment + * Process an XLOG_XACT_ASSIGNMENT WAL record + */ +void +ProcArrayApplyXidAssignment(TransactionId topxid, + int nsubxids, TransactionId *subxids) +{ + TransactionId max_xid; + int i; + + Assert(standbyState >= STANDBY_INITIALIZED); + + max_xid = TransactionIdLatest(topxid, nsubxids, subxids); + + /* + * Mark all the subtransactions as observed. + * + * NOTE: This will fail if the subxid contains too many previously + * unobserved xids to fit into known-assigned-xids. That shouldn't happen + * as the code stands, because xid-assignment records should never contain + * more than PGPROC_MAX_CACHED_SUBXIDS entries. + */ + RecordKnownAssignedTransactionIds(max_xid); + + /* + * Notice that we update pg_subtrans with the top-level xid, rather than + * the parent xid. This is a difference between normal processing and + * recovery, yet is still correct in all cases. The reason is that + * subtransaction commit is not marked in clog until commit processing, so + * all aborted subtransactions have already been clearly marked in clog. + * As a result we are able to refer directly to the top-level + * transaction's state rather than skipping through all the intermediate + * states in the subtransaction tree. This should be the first time we + * have attempted to SubTransSetParent(). + */ + for (i = 0; i < nsubxids; i++) + SubTransSetParent(subxids[i], topxid); + + /* KnownAssignedXids isn't maintained yet, so we're done for now */ + if (standbyState == STANDBY_INITIALIZED) + return; + + /* + * Uses same locking as transaction commit + */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + /* + * Remove subxids from known-assigned-xacts. + */ + KnownAssignedXidsRemoveTree(InvalidTransactionId, nsubxids, subxids); + + /* + * Advance lastOverflowedXid to be at least the last of these subxids. + */ + if (TransactionIdPrecedes(procArray->lastOverflowedXid, max_xid)) + procArray->lastOverflowedXid = max_xid; + + LWLockRelease(ProcArrayLock); +} + +/* + * TransactionIdIsInProgress -- is given transaction running in some backend + * + * Aside from some shortcuts such as checking RecentXmin and our own Xid, + * there are four possibilities for finding a running transaction: + * + * 1. The given Xid is a main transaction Id. We will find this out cheaply + * by looking at ProcGlobal->xids. + * + * 2. The given Xid is one of the cached subxact Xids in the PGPROC array. + * We can find this out cheaply too. + * + * 3. In Hot Standby mode, we must search the KnownAssignedXids list to see + * if the Xid is running on the primary. + * + * 4. Search the SubTrans tree to find the Xid's topmost parent, and then see + * if that is running according to ProcGlobal->xids[] or KnownAssignedXids. + * This is the slowest way, but sadly it has to be done always if the others + * failed, unless we see that the cached subxact sets are complete (none have + * overflowed). + * + * ProcArrayLock has to be held while we do 1, 2, 3. If we save the top Xids + * while doing 1 and 3, we can release the ProcArrayLock while we do 4. + * This buys back some concurrency (and we can't retrieve the main Xids from + * ProcGlobal->xids[] again anyway; see GetNewTransactionId). + */ +bool +TransactionIdIsInProgress(TransactionId xid) +{ + static TransactionId *xids = NULL; + static TransactionId *other_xids; + XidCacheStatus *other_subxidstates; + int nxids = 0; + ProcArrayStruct *arrayP = procArray; + TransactionId topxid; + TransactionId latestCompletedXid; + int mypgxactoff; + int numProcs; + int j; + + /* + * Don't bother checking a transaction older than RecentXmin; it could not + * possibly still be running. (Note: in particular, this guarantees that + * we reject InvalidTransactionId, FrozenTransactionId, etc as not + * running.) + */ + if (TransactionIdPrecedes(xid, RecentXmin)) + { + xc_by_recent_xmin_inc(); + return false; + } + + /* + * We may have just checked the status of this transaction, so if it is + * already known to be completed, we can fall out without any access to + * shared memory. + */ + if (TransactionIdEquals(cachedXidIsNotInProgress, xid)) + { + xc_by_known_xact_inc(); + return false; + } + + /* + * Also, we can handle our own transaction (and subtransactions) without + * any access to shared memory. + */ + if (TransactionIdIsCurrentTransactionId(xid)) + { + xc_by_my_xact_inc(); + return true; + } + + /* + * If first time through, get workspace to remember main XIDs in. We + * malloc it permanently to avoid repeated palloc/pfree overhead. + */ + if (xids == NULL) + { + /* + * In hot standby mode, reserve enough space to hold all xids in the + * known-assigned list. If we later finish recovery, we no longer need + * the bigger array, but we don't bother to shrink it. + */ + int maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs; + + xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId)); + if (xids == NULL) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of memory"))); + } + + other_xids = ProcGlobal->xids; + other_subxidstates = ProcGlobal->subxidStates; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + /* + * Now that we have the lock, we can check latestCompletedXid; if the + * target Xid is after that, it's surely still running. + */ + latestCompletedXid = + XidFromFullTransactionId(ShmemVariableCache->latestCompletedXid); + if (TransactionIdPrecedes(latestCompletedXid, xid)) + { + LWLockRelease(ProcArrayLock); + xc_by_latest_xid_inc(); + return true; + } + + /* No shortcuts, gotta grovel through the array */ + mypgxactoff = MyProc->pgxactoff; + numProcs = arrayP->numProcs; + for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++) + { + int pgprocno; + PGPROC *proc; + TransactionId pxid; + int pxids; + + /* Ignore ourselves --- dealt with it above */ + if (pgxactoff == mypgxactoff) + continue; + + /* Fetch xid just once - see GetNewTransactionId */ + pxid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]); + + if (!TransactionIdIsValid(pxid)) + continue; + + /* + * Step 1: check the main Xid + */ + if (TransactionIdEquals(pxid, xid)) + { + LWLockRelease(ProcArrayLock); + xc_by_main_xid_inc(); + return true; + } + + /* + * We can ignore main Xids that are younger than the target Xid, since + * the target could not possibly be their child. + */ + if (TransactionIdPrecedes(xid, pxid)) + continue; + + /* + * Step 2: check the cached child-Xids arrays + */ + pxids = other_subxidstates[pgxactoff].count; + pg_read_barrier(); /* pairs with barrier in GetNewTransactionId() */ + pgprocno = arrayP->pgprocnos[pgxactoff]; + proc = &allProcs[pgprocno]; + for (j = pxids - 1; j >= 0; j--) + { + /* Fetch xid just once - see GetNewTransactionId */ + TransactionId cxid = UINT32_ACCESS_ONCE(proc->subxids.xids[j]); + + if (TransactionIdEquals(cxid, xid)) + { + LWLockRelease(ProcArrayLock); + xc_by_child_xid_inc(); + return true; + } + } + + /* + * Save the main Xid for step 4. We only need to remember main Xids + * that have uncached children. (Note: there is no race condition + * here because the overflowed flag cannot be cleared, only set, while + * we hold ProcArrayLock. So we can't miss an Xid that we need to + * worry about.) + */ + if (other_subxidstates[pgxactoff].overflowed) + xids[nxids++] = pxid; + } + + /* + * Step 3: in hot standby mode, check the known-assigned-xids list. XIDs + * in the list must be treated as running. + */ + if (RecoveryInProgress()) + { + /* none of the PGPROC entries should have XIDs in hot standby mode */ + Assert(nxids == 0); + + if (KnownAssignedXidExists(xid)) + { + LWLockRelease(ProcArrayLock); + xc_by_known_assigned_inc(); + return true; + } + + /* + * If the KnownAssignedXids overflowed, we have to check pg_subtrans + * too. Fetch all xids from KnownAssignedXids that are lower than + * xid, since if xid is a subtransaction its parent will always have a + * lower value. Note we will collect both main and subXIDs here, but + * there's no help for it. + */ + if (TransactionIdPrecedesOrEquals(xid, procArray->lastOverflowedXid)) + nxids = KnownAssignedXidsGet(xids, xid); + } + + LWLockRelease(ProcArrayLock); + + /* + * If none of the relevant caches overflowed, we know the Xid is not + * running without even looking at pg_subtrans. + */ + if (nxids == 0) + { + xc_no_overflow_inc(); + cachedXidIsNotInProgress = xid; + return false; + } + + /* + * Step 4: have to check pg_subtrans. + * + * At this point, we know it's either a subtransaction of one of the Xids + * in xids[], or it's not running. If it's an already-failed + * subtransaction, we want to say "not running" even though its parent may + * still be running. So first, check pg_xact to see if it's been aborted. + */ + xc_slow_answer_inc(); + + if (TransactionIdDidAbort(xid)) + { + cachedXidIsNotInProgress = xid; + return false; + } + + /* + * It isn't aborted, so check whether the transaction tree it belongs to + * is still running (or, more precisely, whether it was running when we + * held ProcArrayLock). + */ + topxid = SubTransGetTopmostTransaction(xid); + Assert(TransactionIdIsValid(topxid)); + if (!TransactionIdEquals(topxid, xid)) + { + for (int i = 0; i < nxids; i++) + { + if (TransactionIdEquals(xids[i], topxid)) + return true; + } + } + + cachedXidIsNotInProgress = xid; + return false; +} + +/* + * TransactionIdIsActive -- is xid the top-level XID of an active backend? + * + * This differs from TransactionIdIsInProgress in that it ignores prepared + * transactions, as well as transactions running on the primary if we're in + * hot standby. Also, we ignore subtransactions since that's not needed + * for current uses. + */ +bool +TransactionIdIsActive(TransactionId xid) +{ + bool result = false; + ProcArrayStruct *arrayP = procArray; + TransactionId *other_xids = ProcGlobal->xids; + int i; + + /* + * Don't bother checking a transaction older than RecentXmin; it could not + * possibly still be running. + */ + if (TransactionIdPrecedes(xid, RecentXmin)) + return false; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (i = 0; i < arrayP->numProcs; i++) + { + int pgprocno = arrayP->pgprocnos[i]; + PGPROC *proc = &allProcs[pgprocno]; + TransactionId pxid; + + /* Fetch xid just once - see GetNewTransactionId */ + pxid = UINT32_ACCESS_ONCE(other_xids[i]); + + if (!TransactionIdIsValid(pxid)) + continue; + + if (proc->pid == 0) + continue; /* ignore prepared transactions */ + + if (TransactionIdEquals(pxid, xid)) + { + result = true; + break; + } + } + + LWLockRelease(ProcArrayLock); + + return result; +} + + +/* + * Determine XID horizons. + * + * This is used by wrapper functions like GetOldestNonRemovableTransactionId() + * (for VACUUM), GetReplicationHorizons() (for hot_standby_feedback), etc as + * well as "internally" by GlobalVisUpdate() (see comment above struct + * GlobalVisState). + * + * See the definition of ComputeXidHorizonsResult for the various computed + * horizons. + * + * For VACUUM separate horizons (used to decide which deleted tuples must + * be preserved), for shared and non-shared tables are computed. For shared + * relations backends in all databases must be considered, but for non-shared + * relations that's not required, since only backends in my own database could + * ever see the tuples in them. Also, we can ignore concurrently running lazy + * VACUUMs because (a) they must be working on other tables, and (b) they + * don't need to do snapshot-based lookups. + * + * This also computes a horizon used to truncate pg_subtrans. For that + * backends in all databases have to be considered, and concurrently running + * lazy VACUUMs cannot be ignored, as they still may perform pg_subtrans + * accesses. + * + * Note: we include all currently running xids in the set of considered xids. + * This ensures that if a just-started xact has not yet set its snapshot, + * when it does set the snapshot it cannot set xmin less than what we compute. + * See notes in src/backend/access/transam/README. + * + * Note: despite the above, it's possible for the calculated values to move + * backwards on repeated calls. The calculated values are conservative, so + * that anything older is definitely not considered as running by anyone + * anymore, but the exact values calculated depend on a number of things. For + * example, if there are no transactions running in the current database, the + * horizon for normal tables will be latestCompletedXid. If a transaction + * begins after that, its xmin will include in-progress transactions in other + * databases that started earlier, so another call will return a lower value. + * Nonetheless it is safe to vacuum a table in the current database with the + * first result. There are also replication-related effects: a walsender + * process can set its xmin based on transactions that are no longer running + * on the primary but are still being replayed on the standby, thus possibly + * making the values go backwards. In this case there is a possibility that + * we lose data that the standby would like to have, but unless the standby + * uses a replication slot to make its xmin persistent there is little we can + * do about that --- data is only protected if the walsender runs continuously + * while queries are executed on the standby. (The Hot Standby code deals + * with such cases by failing standby queries that needed to access + * already-removed data, so there's no integrity bug.) The computed values + * are also adjusted with vacuum_defer_cleanup_age, so increasing that setting + * on the fly is another easy way to make horizons move backwards, with no + * consequences for data integrity. + * + * Note: the approximate horizons (see definition of GlobalVisState) are + * updated by the computations done here. That's currently required for + * correctness and a small optimization. Without doing so it's possible that + * heap vacuum's call to heap_page_prune() uses a more conservative horizon + * than later when deciding which tuples can be removed - which the code + * doesn't expect (breaking HOT). + */ +static void +ComputeXidHorizons(ComputeXidHorizonsResult *h) +{ + ProcArrayStruct *arrayP = procArray; + TransactionId kaxmin; + bool in_recovery = RecoveryInProgress(); + TransactionId *other_xids = ProcGlobal->xids; + + /* inferred after ProcArrayLock is released */ + h->catalog_oldest_nonremovable = InvalidTransactionId; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + h->latest_completed = ShmemVariableCache->latestCompletedXid; + + /* + * We initialize the MIN() calculation with latestCompletedXid + 1. This + * is a lower bound for the XIDs that might appear in the ProcArray later, + * and so protects us against overestimating the result due to future + * additions. + */ + { + TransactionId initial; + + initial = XidFromFullTransactionId(h->latest_completed); + Assert(TransactionIdIsValid(initial)); + TransactionIdAdvance(initial); + + h->oldest_considered_running = initial; + h->shared_oldest_nonremovable = initial; + h->data_oldest_nonremovable = initial; + + /* + * Only modifications made by this backend affect the horizon for + * temporary relations. Instead of a check in each iteration of the + * loop over all PGPROCs it is cheaper to just initialize to the + * current top-level xid any. + * + * Without an assigned xid we could use a horizon as aggressive as + * ReadNewTransactionid(), but we can get away with the much cheaper + * latestCompletedXid + 1: If this backend has no xid there, by + * definition, can't be any newer changes in the temp table than + * latestCompletedXid. + */ + if (TransactionIdIsValid(MyProc->xid)) + h->temp_oldest_nonremovable = MyProc->xid; + else + h->temp_oldest_nonremovable = initial; + } + + /* + * Fetch slot horizons while ProcArrayLock is held - the + * LWLockAcquire/LWLockRelease are a barrier, ensuring this happens inside + * the lock. + */ + h->slot_xmin = procArray->replication_slot_xmin; + h->slot_catalog_xmin = procArray->replication_slot_catalog_xmin; + + for (int index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + int8 statusFlags = ProcGlobal->statusFlags[index]; + TransactionId xid; + TransactionId xmin; + + /* Fetch xid just once - see GetNewTransactionId */ + xid = UINT32_ACCESS_ONCE(other_xids[index]); + xmin = UINT32_ACCESS_ONCE(proc->xmin); + + /* + * Consider both the transaction's Xmin, and its Xid. + * + * We must check both because a transaction might have an Xmin but not + * (yet) an Xid; conversely, if it has an Xid, that could determine + * some not-yet-set Xmin. + */ + xmin = TransactionIdOlder(xmin, xid); + + /* if neither is set, this proc doesn't influence the horizon */ + if (!TransactionIdIsValid(xmin)) + continue; + + /* + * Don't ignore any procs when determining which transactions might be + * considered running. While slots should ensure logical decoding + * backends are protected even without this check, it can't hurt to + * include them here as well.. + */ + h->oldest_considered_running = + TransactionIdOlder(h->oldest_considered_running, xmin); + + /* + * Skip over backends either vacuuming (which is ok with rows being + * removed, as long as pg_subtrans is not truncated) or doing logical + * decoding (which manages xmin separately, check below). + */ + if (statusFlags & (PROC_IN_VACUUM | PROC_IN_LOGICAL_DECODING)) + continue; + + /* shared tables need to take backends in all databases into account */ + h->shared_oldest_nonremovable = + TransactionIdOlder(h->shared_oldest_nonremovable, xmin); + + /* + * Normally sessions in other databases are ignored for anything but + * the shared horizon. + * + * However, include them when MyDatabaseId is not (yet) set. A + * backend in the process of starting up must not compute a "too + * aggressive" horizon, otherwise we could end up using it to prune + * still-needed data away. If the current backend never connects to a + * database this is harmless, because data_oldest_nonremovable will + * never be utilized. + * + * Also, sessions marked with PROC_AFFECTS_ALL_HORIZONS should always + * be included. (This flag is used for hot standby feedback, which + * can't be tied to a specific database.) + * + * Also, while in recovery we cannot compute an accurate per-database + * horizon, as all xids are managed via the KnownAssignedXids + * machinery. + */ + if (proc->databaseId == MyDatabaseId || + MyDatabaseId == InvalidOid || + (statusFlags & PROC_AFFECTS_ALL_HORIZONS) || + in_recovery) + { + h->data_oldest_nonremovable = + TransactionIdOlder(h->data_oldest_nonremovable, xmin); + } + } + + /* + * If in recovery fetch oldest xid in KnownAssignedXids, will be applied + * after lock is released. + */ + if (in_recovery) + kaxmin = KnownAssignedXidsGetOldestXmin(); + + /* + * No other information from shared state is needed, release the lock + * immediately. The rest of the computations can be done without a lock. + */ + LWLockRelease(ProcArrayLock); + + if (in_recovery) + { + h->oldest_considered_running = + TransactionIdOlder(h->oldest_considered_running, kaxmin); + h->shared_oldest_nonremovable = + TransactionIdOlder(h->shared_oldest_nonremovable, kaxmin); + h->data_oldest_nonremovable = + TransactionIdOlder(h->data_oldest_nonremovable, kaxmin); + /* temp relations cannot be accessed in recovery */ + } + else + { + /* + * Compute the cutoff XID by subtracting vacuum_defer_cleanup_age. + * + * vacuum_defer_cleanup_age provides some additional "slop" for the + * benefit of hot standby queries on standby servers. This is quick + * and dirty, and perhaps not all that useful unless the primary has a + * predictable transaction rate, but it offers some protection when + * there's no walsender connection. Note that we are assuming + * vacuum_defer_cleanup_age isn't large enough to cause wraparound --- + * so guc.c should limit it to no more than the xidStopLimit threshold + * in varsup.c. Also note that we intentionally don't apply + * vacuum_defer_cleanup_age on standby servers. + * + * Need to use TransactionIdRetreatSafely() instead of open-coding the + * subtraction, to prevent creating an xid before + * FirstNormalTransactionId. + */ + Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->shared_oldest_nonremovable)); + Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable, + h->data_oldest_nonremovable)); + + if (vacuum_defer_cleanup_age > 0) + { + TransactionIdRetreatSafely(&h->oldest_considered_running, + vacuum_defer_cleanup_age, + h->latest_completed); + TransactionIdRetreatSafely(&h->shared_oldest_nonremovable, + vacuum_defer_cleanup_age, + h->latest_completed); + TransactionIdRetreatSafely(&h->data_oldest_nonremovable, + vacuum_defer_cleanup_age, + h->latest_completed); + /* defer doesn't apply to temp relations */ + + + Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->shared_oldest_nonremovable)); + Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable, + h->data_oldest_nonremovable)); + } + } + + /* + * Check whether there are replication slots requiring an older xmin. + */ + h->shared_oldest_nonremovable = + TransactionIdOlder(h->shared_oldest_nonremovable, h->slot_xmin); + h->data_oldest_nonremovable = + TransactionIdOlder(h->data_oldest_nonremovable, h->slot_xmin); + + /* + * The only difference between catalog / data horizons is that the slot's + * catalog xmin is applied to the catalog one (so catalogs can be accessed + * for logical decoding). Initialize with data horizon, and then back up + * further if necessary. Have to back up the shared horizon as well, since + * that also can contain catalogs. + */ + h->shared_oldest_nonremovable_raw = h->shared_oldest_nonremovable; + h->shared_oldest_nonremovable = + TransactionIdOlder(h->shared_oldest_nonremovable, + h->slot_catalog_xmin); + h->catalog_oldest_nonremovable = h->data_oldest_nonremovable; + h->catalog_oldest_nonremovable = + TransactionIdOlder(h->catalog_oldest_nonremovable, + h->slot_catalog_xmin); + + /* + * It's possible that slots / vacuum_defer_cleanup_age backed up the + * horizons further than oldest_considered_running. Fix. + */ + h->oldest_considered_running = + TransactionIdOlder(h->oldest_considered_running, + h->shared_oldest_nonremovable); + h->oldest_considered_running = + TransactionIdOlder(h->oldest_considered_running, + h->catalog_oldest_nonremovable); + h->oldest_considered_running = + TransactionIdOlder(h->oldest_considered_running, + h->data_oldest_nonremovable); + + /* + * shared horizons have to be at least as old as the oldest visible in + * current db + */ + Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable, + h->data_oldest_nonremovable)); + Assert(TransactionIdPrecedesOrEquals(h->shared_oldest_nonremovable, + h->catalog_oldest_nonremovable)); + + /* + * Horizons need to ensure that pg_subtrans access is still possible for + * the relevant backends. + */ + Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->shared_oldest_nonremovable)); + Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->catalog_oldest_nonremovable)); + Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->data_oldest_nonremovable)); + Assert(TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->temp_oldest_nonremovable)); + Assert(!TransactionIdIsValid(h->slot_xmin) || + TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->slot_xmin)); + Assert(!TransactionIdIsValid(h->slot_catalog_xmin) || + TransactionIdPrecedesOrEquals(h->oldest_considered_running, + h->slot_catalog_xmin)); + + /* update approximate horizons with the computed horizons */ + GlobalVisUpdateApply(h); +} + +/* + * Determine what kind of visibility horizon needs to be used for a + * relation. If rel is NULL, the most conservative horizon is used. + */ +static inline GlobalVisHorizonKind +GlobalVisHorizonKindForRel(Relation rel) +{ + /* + * Other relkkinds currently don't contain xids, nor always the necessary + * logical decoding markers. + */ + Assert(!rel || + rel->rd_rel->relkind == RELKIND_RELATION || + rel->rd_rel->relkind == RELKIND_MATVIEW || + rel->rd_rel->relkind == RELKIND_TOASTVALUE); + + if (rel == NULL || rel->rd_rel->relisshared || RecoveryInProgress()) + return VISHORIZON_SHARED; + else if (IsCatalogRelation(rel) || + RelationIsAccessibleInLogicalDecoding(rel)) + return VISHORIZON_CATALOG; + else if (!RELATION_IS_LOCAL(rel)) + return VISHORIZON_DATA; + else + return VISHORIZON_TEMP; +} + +/* + * Return the oldest XID for which deleted tuples must be preserved in the + * passed table. + * + * If rel is not NULL the horizon may be considerably more recent than + * otherwise (i.e. fewer tuples will be removable). In the NULL case a horizon + * that is correct (but not optimal) for all relations will be returned. + * + * This is used by VACUUM to decide which deleted tuples must be preserved in + * the passed in table. + */ +TransactionId +GetOldestNonRemovableTransactionId(Relation rel) +{ + ComputeXidHorizonsResult horizons; + + ComputeXidHorizons(&horizons); + + switch (GlobalVisHorizonKindForRel(rel)) + { + case VISHORIZON_SHARED: + return horizons.shared_oldest_nonremovable; + case VISHORIZON_CATALOG: + return horizons.catalog_oldest_nonremovable; + case VISHORIZON_DATA: + return horizons.data_oldest_nonremovable; + case VISHORIZON_TEMP: + return horizons.temp_oldest_nonremovable; + } + + /* just to prevent compiler warnings */ + return InvalidTransactionId; +} + +/* + * Return the oldest transaction id any currently running backend might still + * consider running. This should not be used for visibility / pruning + * determinations (see GetOldestNonRemovableTransactionId()), but for + * decisions like up to where pg_subtrans can be truncated. + */ +TransactionId +GetOldestTransactionIdConsideredRunning(void) +{ + ComputeXidHorizonsResult horizons; + + ComputeXidHorizons(&horizons); + + return horizons.oldest_considered_running; +} + +/* + * Return the visibility horizons for a hot standby feedback message. + */ +void +GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin) +{ + ComputeXidHorizonsResult horizons; + + ComputeXidHorizons(&horizons); + + /* + * Don't want to use shared_oldest_nonremovable here, as that contains the + * effect of replication slot's catalog_xmin. We want to send a separate + * feedback for the catalog horizon, so the primary can remove data table + * contents more aggressively. + */ + *xmin = horizons.shared_oldest_nonremovable_raw; + *catalog_xmin = horizons.slot_catalog_xmin; +} + +/* + * GetMaxSnapshotXidCount -- get max size for snapshot XID array + * + * We have to export this for use by snapmgr.c. + */ +int +GetMaxSnapshotXidCount(void) +{ + return procArray->maxProcs; +} + +/* + * GetMaxSnapshotSubxidCount -- get max size for snapshot sub-XID array + * + * We have to export this for use by snapmgr.c. + */ +int +GetMaxSnapshotSubxidCount(void) +{ + return TOTAL_MAX_CACHED_SUBXIDS; +} + +/* + * Initialize old_snapshot_threshold specific parts of a newly build snapshot. + */ +static void +GetSnapshotDataInitOldSnapshot(Snapshot snapshot) +{ + if (!OldSnapshotThresholdActive()) + { + /* + * If not using "snapshot too old" feature, fill related fields with + * dummy values that don't require any locking. + */ + snapshot->lsn = InvalidXLogRecPtr; + snapshot->whenTaken = 0; + } + else + { + /* + * Capture the current time and WAL stream location in case this + * snapshot becomes old enough to need to fall back on the special + * "old snapshot" logic. + */ + snapshot->lsn = GetXLogInsertRecPtr(); + snapshot->whenTaken = GetSnapshotCurrentTimestamp(); + MaintainOldSnapshotTimeMapping(snapshot->whenTaken, snapshot->xmin); + } +} + +/* + * Helper function for GetSnapshotData() that checks if the bulk of the + * visibility information in the snapshot is still valid. If so, it updates + * the fields that need to change and returns true. Otherwise it returns + * false. + * + * This very likely can be evolved to not need ProcArrayLock held (at very + * least in the case we already hold a snapshot), but that's for another day. + */ +static bool +GetSnapshotDataReuse(Snapshot snapshot) +{ + uint64 curXactCompletionCount; + + Assert(LWLockHeldByMe(ProcArrayLock)); + + if (unlikely(snapshot->snapXactCompletionCount == 0)) + return false; + + curXactCompletionCount = ShmemVariableCache->xactCompletionCount; + if (curXactCompletionCount != snapshot->snapXactCompletionCount) + return false; + + /* + * If the current xactCompletionCount is still the same as it was at the + * time the snapshot was built, we can be sure that rebuilding the + * contents of the snapshot the hard way would result in the same snapshot + * contents: + * + * As explained in transam/README, the set of xids considered running by + * GetSnapshotData() cannot change while ProcArrayLock is held. Snapshot + * contents only depend on transactions with xids and xactCompletionCount + * is incremented whenever a transaction with an xid finishes (while + * holding ProcArrayLock) exclusively). Thus the xactCompletionCount check + * ensures we would detect if the snapshot would have changed. + * + * As the snapshot contents are the same as it was before, it is safe to + * re-enter the snapshot's xmin into the PGPROC array. None of the rows + * visible under the snapshot could already have been removed (that'd + * require the set of running transactions to change) and it fulfills the + * requirement that concurrent GetSnapshotData() calls yield the same + * xmin. + */ + if (!TransactionIdIsValid(MyProc->xmin)) + MyProc->xmin = TransactionXmin = snapshot->xmin; + + RecentXmin = snapshot->xmin; + Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin)); + + snapshot->curcid = GetCurrentCommandId(false); + snapshot->active_count = 0; + snapshot->regd_count = 0; + snapshot->copied = false; + + GetSnapshotDataInitOldSnapshot(snapshot); + + return true; +} + +/* + * GetSnapshotData -- returns information about running transactions. + * + * The returned snapshot includes xmin (lowest still-running xact ID), + * xmax (highest completed xact ID + 1), and a list of running xact IDs + * in the range xmin <= xid < xmax. It is used as follows: + * All xact IDs < xmin are considered finished. + * All xact IDs >= xmax are considered still running. + * For an xact ID xmin <= xid < xmax, consult list to see whether + * it is considered running or not. + * This ensures that the set of transactions seen as "running" by the + * current xact will not change after it takes the snapshot. + * + * All running top-level XIDs are included in the snapshot, except for lazy + * VACUUM processes. We also try to include running subtransaction XIDs, + * but since PGPROC has only a limited cache area for subxact XIDs, full + * information may not be available. If we find any overflowed subxid arrays, + * we have to mark the snapshot's subxid data as overflowed, and extra work + * *may* need to be done to determine what's running (see XidInMVCCSnapshot() + * in heapam_visibility.c). + * + * We also update the following backend-global variables: + * TransactionXmin: the oldest xmin of any snapshot in use in the + * current transaction (this is the same as MyProc->xmin). + * RecentXmin: the xmin computed for the most recent snapshot. XIDs + * older than this are known not running any more. + * + * And try to advance the bounds of GlobalVis{Shared,Catalog,Data,Temp}Rels + * for the benefit of the GlobalVisTest* family of functions. + * + * Note: this function should probably not be called with an argument that's + * not statically allocated (see xip allocation below). + */ +Snapshot +GetSnapshotData(Snapshot snapshot) +{ + ProcArrayStruct *arrayP = procArray; + TransactionId *other_xids = ProcGlobal->xids; + TransactionId xmin; + TransactionId xmax; + int count = 0; + int subcount = 0; + bool suboverflowed = false; + FullTransactionId latest_completed; + TransactionId oldestxid; + int mypgxactoff; + TransactionId myxid; + uint64 curXactCompletionCount; + + TransactionId replication_slot_xmin = InvalidTransactionId; + TransactionId replication_slot_catalog_xmin = InvalidTransactionId; + + Assert(snapshot != NULL); + + /* + * Allocating space for maxProcs xids is usually overkill; numProcs would + * be sufficient. But it seems better to do the malloc while not holding + * the lock, so we can't look at numProcs. Likewise, we allocate much + * more subxip storage than is probably needed. + * + * This does open a possibility for avoiding repeated malloc/free: since + * maxProcs does not change at runtime, we can simply reuse the previous + * xip arrays if any. (This relies on the fact that all callers pass + * static SnapshotData structs.) + */ + if (snapshot->xip == NULL) + { + /* + * First call for this snapshot. Snapshot is same size whether or not + * we are in recovery, see later comments. + */ + snapshot->xip = (TransactionId *) + malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId)); + if (snapshot->xip == NULL) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of memory"))); + Assert(snapshot->subxip == NULL); + snapshot->subxip = (TransactionId *) + malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId)); + if (snapshot->subxip == NULL) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of memory"))); + } + + /* + * It is sufficient to get shared lock on ProcArrayLock, even if we are + * going to set MyProc->xmin. + */ + LWLockAcquire(ProcArrayLock, LW_SHARED); + + if (GetSnapshotDataReuse(snapshot)) + { + LWLockRelease(ProcArrayLock); + return snapshot; + } + + latest_completed = ShmemVariableCache->latestCompletedXid; + mypgxactoff = MyProc->pgxactoff; + myxid = other_xids[mypgxactoff]; + Assert(myxid == MyProc->xid); + + oldestxid = ShmemVariableCache->oldestXid; + curXactCompletionCount = ShmemVariableCache->xactCompletionCount; + + /* xmax is always latestCompletedXid + 1 */ + xmax = XidFromFullTransactionId(latest_completed); + TransactionIdAdvance(xmax); + Assert(TransactionIdIsNormal(xmax)); + + /* initialize xmin calculation with xmax */ + xmin = xmax; + + /* take own xid into account, saves a check inside the loop */ + if (TransactionIdIsNormal(myxid) && NormalTransactionIdPrecedes(myxid, xmin)) + xmin = myxid; + + snapshot->takenDuringRecovery = RecoveryInProgress(); + + if (!snapshot->takenDuringRecovery) + { + int numProcs = arrayP->numProcs; + TransactionId *xip = snapshot->xip; + int *pgprocnos = arrayP->pgprocnos; + XidCacheStatus *subxidStates = ProcGlobal->subxidStates; + uint8 *allStatusFlags = ProcGlobal->statusFlags; + + /* + * First collect set of pgxactoff/xids that need to be included in the + * snapshot. + */ + for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++) + { + /* Fetch xid just once - see GetNewTransactionId */ + TransactionId xid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]); + uint8 statusFlags; + + Assert(allProcs[arrayP->pgprocnos[pgxactoff]].pgxactoff == pgxactoff); + + /* + * If the transaction has no XID assigned, we can skip it; it + * won't have sub-XIDs either. + */ + if (likely(xid == InvalidTransactionId)) + continue; + + /* + * We don't include our own XIDs (if any) in the snapshot. It + * needs to be included in the xmin computation, but we did so + * outside the loop. + */ + if (pgxactoff == mypgxactoff) + continue; + + /* + * The only way we are able to get here with a non-normal xid is + * during bootstrap - with this backend using + * BootstrapTransactionId. But the above test should filter that + * out. + */ + Assert(TransactionIdIsNormal(xid)); + + /* + * If the XID is >= xmax, we can skip it; such transactions will + * be treated as running anyway (and any sub-XIDs will also be >= + * xmax). + */ + if (!NormalTransactionIdPrecedes(xid, xmax)) + continue; + + /* + * Skip over backends doing logical decoding which manages xmin + * separately (check below) and ones running LAZY VACUUM. + */ + statusFlags = allStatusFlags[pgxactoff]; + if (statusFlags & (PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM)) + continue; + + if (NormalTransactionIdPrecedes(xid, xmin)) + xmin = xid; + + /* Add XID to snapshot. */ + xip[count++] = xid; + + /* + * Save subtransaction XIDs if possible (if we've already + * overflowed, there's no point). Note that the subxact XIDs must + * be later than their parent, so no need to check them against + * xmin. We could filter against xmax, but it seems better not to + * do that much work while holding the ProcArrayLock. + * + * The other backend can add more subxids concurrently, but cannot + * remove any. Hence it's important to fetch nxids just once. + * Should be safe to use memcpy, though. (We needn't worry about + * missing any xids added concurrently, because they must postdate + * xmax.) + * + * Again, our own XIDs are not included in the snapshot. + */ + if (!suboverflowed) + { + + if (subxidStates[pgxactoff].overflowed) + suboverflowed = true; + else + { + int nsubxids = subxidStates[pgxactoff].count; + + if (nsubxids > 0) + { + int pgprocno = pgprocnos[pgxactoff]; + PGPROC *proc = &allProcs[pgprocno]; + + pg_read_barrier(); /* pairs with GetNewTransactionId */ + + memcpy(snapshot->subxip + subcount, + (void *) proc->subxids.xids, + nsubxids * sizeof(TransactionId)); + subcount += nsubxids; + } + } + } + } + } + else + { + /* + * We're in hot standby, so get XIDs from KnownAssignedXids. + * + * We store all xids directly into subxip[]. Here's why: + * + * In recovery we don't know which xids are top-level and which are + * subxacts, a design choice that greatly simplifies xid processing. + * + * It seems like we would want to try to put xids into xip[] only, but + * that is fairly small. We would either need to make that bigger or + * to increase the rate at which we WAL-log xid assignment; neither is + * an appealing choice. + * + * We could try to store xids into xip[] first and then into subxip[] + * if there are too many xids. That only works if the snapshot doesn't + * overflow because we do not search subxip[] in that case. A simpler + * way is to just store all xids in the subxact array because this is + * by far the bigger array. We just leave the xip array empty. + * + * Either way we need to change the way XidInMVCCSnapshot() works + * depending upon when the snapshot was taken, or change normal + * snapshot processing so it matches. + * + * Note: It is possible for recovery to end before we finish taking + * the snapshot, and for newly assigned transaction ids to be added to + * the ProcArray. xmax cannot change while we hold ProcArrayLock, so + * those newly added transaction ids would be filtered away, so we + * need not be concerned about them. + */ + subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin, + xmax); + + if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid)) + suboverflowed = true; + } + + + /* + * Fetch into local variable while ProcArrayLock is held - the + * LWLockRelease below is a barrier, ensuring this happens inside the + * lock. + */ + replication_slot_xmin = procArray->replication_slot_xmin; + replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin; + + if (!TransactionIdIsValid(MyProc->xmin)) + MyProc->xmin = TransactionXmin = xmin; + + LWLockRelease(ProcArrayLock); + + /* maintain state for GlobalVis* */ + { + TransactionId def_vis_xid; + TransactionId def_vis_xid_data; + FullTransactionId def_vis_fxid; + FullTransactionId def_vis_fxid_data; + FullTransactionId oldestfxid; + + /* + * Converting oldestXid is only safe when xid horizon cannot advance, + * i.e. holding locks. While we don't hold the lock anymore, all the + * necessary data has been gathered with lock held. + */ + oldestfxid = FullXidRelativeTo(latest_completed, oldestxid); + + /* apply vacuum_defer_cleanup_age */ + def_vis_xid_data = xmin; + TransactionIdRetreatSafely(&def_vis_xid_data, + vacuum_defer_cleanup_age, + oldestfxid); + + /* Check whether there's a replication slot requiring an older xmin. */ + def_vis_xid_data = + TransactionIdOlder(def_vis_xid_data, replication_slot_xmin); + + /* + * Rows in non-shared, non-catalog tables possibly could be vacuumed + * if older than this xid. + */ + def_vis_xid = def_vis_xid_data; + + /* + * Check whether there's a replication slot requiring an older catalog + * xmin. + */ + def_vis_xid = + TransactionIdOlder(replication_slot_catalog_xmin, def_vis_xid); + + def_vis_fxid = FullXidRelativeTo(latest_completed, def_vis_xid); + def_vis_fxid_data = FullXidRelativeTo(latest_completed, def_vis_xid_data); + + /* + * Check if we can increase upper bound. As a previous + * GlobalVisUpdate() might have computed more aggressive values, don't + * overwrite them if so. + */ + GlobalVisSharedRels.definitely_needed = + FullTransactionIdNewer(def_vis_fxid, + GlobalVisSharedRels.definitely_needed); + GlobalVisCatalogRels.definitely_needed = + FullTransactionIdNewer(def_vis_fxid, + GlobalVisCatalogRels.definitely_needed); + GlobalVisDataRels.definitely_needed = + FullTransactionIdNewer(def_vis_fxid_data, + GlobalVisDataRels.definitely_needed); + /* See temp_oldest_nonremovable computation in ComputeXidHorizons() */ + if (TransactionIdIsNormal(myxid)) + GlobalVisTempRels.definitely_needed = + FullXidRelativeTo(latest_completed, myxid); + else + { + GlobalVisTempRels.definitely_needed = latest_completed; + FullTransactionIdAdvance(&GlobalVisTempRels.definitely_needed); + } + + /* + * Check if we know that we can initialize or increase the lower + * bound. Currently the only cheap way to do so is to use + * ShmemVariableCache->oldestXid as input. + * + * We should definitely be able to do better. We could e.g. put a + * global lower bound value into ShmemVariableCache. + */ + GlobalVisSharedRels.maybe_needed = + FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed, + oldestfxid); + GlobalVisCatalogRels.maybe_needed = + FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed, + oldestfxid); + GlobalVisDataRels.maybe_needed = + FullTransactionIdNewer(GlobalVisDataRels.maybe_needed, + oldestfxid); + /* accurate value known */ + GlobalVisTempRels.maybe_needed = GlobalVisTempRels.definitely_needed; + } + + RecentXmin = xmin; + Assert(TransactionIdPrecedesOrEquals(TransactionXmin, RecentXmin)); + + snapshot->xmin = xmin; + snapshot->xmax = xmax; + snapshot->xcnt = count; + snapshot->subxcnt = subcount; + snapshot->suboverflowed = suboverflowed; + snapshot->snapXactCompletionCount = curXactCompletionCount; + + snapshot->curcid = GetCurrentCommandId(false); + + /* + * This is a new snapshot, so set both refcounts are zero, and mark it as + * not copied in persistent memory. + */ + snapshot->active_count = 0; + snapshot->regd_count = 0; + snapshot->copied = false; + + GetSnapshotDataInitOldSnapshot(snapshot); + + return snapshot; +} + +/* + * ProcArrayInstallImportedXmin -- install imported xmin into MyProc->xmin + * + * This is called when installing a snapshot imported from another + * transaction. To ensure that OldestXmin doesn't go backwards, we must + * check that the source transaction is still running, and we'd better do + * that atomically with installing the new xmin. + * + * Returns true if successful, false if source xact is no longer running. + */ +bool +ProcArrayInstallImportedXmin(TransactionId xmin, + VirtualTransactionId *sourcevxid) +{ + bool result = false; + ProcArrayStruct *arrayP = procArray; + int index; + + Assert(TransactionIdIsNormal(xmin)); + if (!sourcevxid) + return false; + + /* Get lock so source xact can't end while we're doing this */ + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + int statusFlags = ProcGlobal->statusFlags[index]; + TransactionId xid; + + /* Ignore procs running LAZY VACUUM */ + if (statusFlags & PROC_IN_VACUUM) + continue; + + /* We are only interested in the specific virtual transaction. */ + if (proc->backendId != sourcevxid->backendId) + continue; + if (proc->lxid != sourcevxid->localTransactionId) + continue; + + /* + * We check the transaction's database ID for paranoia's sake: if it's + * in another DB then its xmin does not cover us. Caller should have + * detected this already, so we just treat any funny cases as + * "transaction not found". + */ + if (proc->databaseId != MyDatabaseId) + continue; + + /* + * Likewise, let's just make real sure its xmin does cover us. + */ + xid = UINT32_ACCESS_ONCE(proc->xmin); + if (!TransactionIdIsNormal(xid) || + !TransactionIdPrecedesOrEquals(xid, xmin)) + continue; + + /* + * We're good. Install the new xmin. As in GetSnapshotData, set + * TransactionXmin too. (Note that because snapmgr.c called + * GetSnapshotData first, we'll be overwriting a valid xmin here, so + * we don't check that.) + */ + MyProc->xmin = TransactionXmin = xmin; + + result = true; + break; + } + + LWLockRelease(ProcArrayLock); + + return result; +} + +/* + * ProcArrayInstallRestoredXmin -- install restored xmin into MyProc->xmin + * + * This is like ProcArrayInstallImportedXmin, but we have a pointer to the + * PGPROC of the transaction from which we imported the snapshot, rather than + * an XID. + * + * Note that this function also copies statusFlags from the source `proc` in + * order to avoid the case where MyProc's xmin needs to be skipped for + * computing xid horizon. + * + * Returns true if successful, false if source xact is no longer running. + */ +bool +ProcArrayInstallRestoredXmin(TransactionId xmin, PGPROC *proc) +{ + bool result = false; + TransactionId xid; + + Assert(TransactionIdIsNormal(xmin)); + Assert(proc != NULL); + + /* + * Get an exclusive lock so that we can copy statusFlags from source proc. + */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + /* + * Be certain that the referenced PGPROC has an advertised xmin which is + * no later than the one we're installing, so that the system-wide xmin + * can't go backwards. Also, make sure it's running in the same database, + * so that the per-database xmin cannot go backwards. + */ + xid = UINT32_ACCESS_ONCE(proc->xmin); + if (proc->databaseId == MyDatabaseId && + TransactionIdIsNormal(xid) && + TransactionIdPrecedesOrEquals(xid, xmin)) + { + /* + * Install xmin and propagate the statusFlags that affect how the + * value is interpreted by vacuum. + */ + MyProc->xmin = TransactionXmin = xmin; + MyProc->statusFlags = (MyProc->statusFlags & ~PROC_XMIN_FLAGS) | + (proc->statusFlags & PROC_XMIN_FLAGS); + ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags; + + result = true; + } + + LWLockRelease(ProcArrayLock); + + return result; +} + +/* + * GetRunningTransactionData -- returns information about running transactions. + * + * Similar to GetSnapshotData but returns more information. We include + * all PGPROCs with an assigned TransactionId, even VACUUM processes and + * prepared transactions. + * + * We acquire XidGenLock and ProcArrayLock, but the caller is responsible for + * releasing them. Acquiring XidGenLock ensures that no new XIDs enter the proc + * array until the caller has WAL-logged this snapshot, and releases the + * lock. Acquiring ProcArrayLock ensures that no transactions commit until the + * lock is released. + * + * The returned data structure is statically allocated; caller should not + * modify it, and must not assume it is valid past the next call. + * + * This is never executed during recovery so there is no need to look at + * KnownAssignedXids. + * + * Dummy PGPROCs from prepared transaction are included, meaning that this + * may return entries with duplicated TransactionId values coming from + * transaction finishing to prepare. Nothing is done about duplicated + * entries here to not hold on ProcArrayLock more than necessary. + * + * We don't worry about updating other counters, we want to keep this as + * simple as possible and leave GetSnapshotData() as the primary code for + * that bookkeeping. + * + * Note that if any transaction has overflowed its cached subtransactions + * then there is no real need include any subtransactions. + */ +RunningTransactions +GetRunningTransactionData(void) +{ + /* result workspace */ + static RunningTransactionsData CurrentRunningXactsData; + + ProcArrayStruct *arrayP = procArray; + TransactionId *other_xids = ProcGlobal->xids; + RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData; + TransactionId latestCompletedXid; + TransactionId oldestRunningXid; + TransactionId *xids; + int index; + int count; + int subcount; + bool suboverflowed; + + Assert(!RecoveryInProgress()); + + /* + * Allocating space for maxProcs xids is usually overkill; numProcs would + * be sufficient. But it seems better to do the malloc while not holding + * the lock, so we can't look at numProcs. Likewise, we allocate much + * more subxip storage than is probably needed. + * + * Should only be allocated in bgwriter, since only ever executed during + * checkpoints. + */ + if (CurrentRunningXacts->xids == NULL) + { + /* + * First call + */ + CurrentRunningXacts->xids = (TransactionId *) + malloc(TOTAL_MAX_CACHED_SUBXIDS * sizeof(TransactionId)); + if (CurrentRunningXacts->xids == NULL) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of memory"))); + } + + xids = CurrentRunningXacts->xids; + + count = subcount = 0; + suboverflowed = false; + + /* + * Ensure that no xids enter or leave the procarray while we obtain + * snapshot. + */ + LWLockAcquire(ProcArrayLock, LW_SHARED); + LWLockAcquire(XidGenLock, LW_SHARED); + + latestCompletedXid = + XidFromFullTransactionId(ShmemVariableCache->latestCompletedXid); + oldestRunningXid = + XidFromFullTransactionId(ShmemVariableCache->nextXid); + + /* + * Spin over procArray collecting all xids + */ + for (index = 0; index < arrayP->numProcs; index++) + { + TransactionId xid; + + /* Fetch xid just once - see GetNewTransactionId */ + xid = UINT32_ACCESS_ONCE(other_xids[index]); + + /* + * We don't need to store transactions that don't have a TransactionId + * yet because they will not show as running on a standby server. + */ + if (!TransactionIdIsValid(xid)) + continue; + + /* + * Be careful not to exclude any xids before calculating the values of + * oldestRunningXid and suboverflowed, since these are used to clean + * up transaction information held on standbys. + */ + if (TransactionIdPrecedes(xid, oldestRunningXid)) + oldestRunningXid = xid; + + if (ProcGlobal->subxidStates[index].overflowed) + suboverflowed = true; + + /* + * If we wished to exclude xids this would be the right place for it. + * Procs with the PROC_IN_VACUUM flag set don't usually assign xids, + * but they do during truncation at the end when they get the lock and + * truncate, so it is not much of a problem to include them if they + * are seen and it is cleaner to include them. + */ + + xids[count++] = xid; + } + + /* + * Spin over procArray collecting all subxids, but only if there hasn't + * been a suboverflow. + */ + if (!suboverflowed) + { + XidCacheStatus *other_subxidstates = ProcGlobal->subxidStates; + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + int nsubxids; + + /* + * Save subtransaction XIDs. Other backends can't add or remove + * entries while we're holding XidGenLock. + */ + nsubxids = other_subxidstates[index].count; + if (nsubxids > 0) + { + /* barrier not really required, as XidGenLock is held, but ... */ + pg_read_barrier(); /* pairs with GetNewTransactionId */ + + memcpy(&xids[count], (void *) proc->subxids.xids, + nsubxids * sizeof(TransactionId)); + count += nsubxids; + subcount += nsubxids; + + /* + * Top-level XID of a transaction is always less than any of + * its subxids, so we don't need to check if any of the + * subxids are smaller than oldestRunningXid + */ + } + } + } + + /* + * It's important *not* to include the limits set by slots here because + * snapbuild.c uses oldestRunningXid to manage its xmin horizon. If those + * were to be included here the initial value could never increase because + * of a circular dependency where slots only increase their limits when + * running xacts increases oldestRunningXid and running xacts only + * increases if slots do. + */ + + CurrentRunningXacts->xcnt = count - subcount; + CurrentRunningXacts->subxcnt = subcount; + CurrentRunningXacts->subxid_overflow = suboverflowed; + CurrentRunningXacts->nextXid = XidFromFullTransactionId(ShmemVariableCache->nextXid); + CurrentRunningXacts->oldestRunningXid = oldestRunningXid; + CurrentRunningXacts->latestCompletedXid = latestCompletedXid; + + Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid)); + Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid)); + Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid)); + + /* We don't release the locks here, the caller is responsible for that */ + + return CurrentRunningXacts; +} + +/* + * GetOldestActiveTransactionId() + * + * Similar to GetSnapshotData but returns just oldestActiveXid. We include + * all PGPROCs with an assigned TransactionId, even VACUUM processes. + * We look at all databases, though there is no need to include WALSender + * since this has no effect on hot standby conflicts. + * + * This is never executed during recovery so there is no need to look at + * KnownAssignedXids. + * + * We don't worry about updating other counters, we want to keep this as + * simple as possible and leave GetSnapshotData() as the primary code for + * that bookkeeping. + */ +TransactionId +GetOldestActiveTransactionId(void) +{ + ProcArrayStruct *arrayP = procArray; + TransactionId *other_xids = ProcGlobal->xids; + TransactionId oldestRunningXid; + int index; + + Assert(!RecoveryInProgress()); + + /* + * Read nextXid, as the upper bound of what's still active. + * + * Reading a TransactionId is atomic, but we must grab the lock to make + * sure that all XIDs < nextXid are already present in the proc array (or + * have already completed), when we spin over it. + */ + LWLockAcquire(XidGenLock, LW_SHARED); + oldestRunningXid = XidFromFullTransactionId(ShmemVariableCache->nextXid); + LWLockRelease(XidGenLock); + + /* + * Spin over procArray collecting all xids and subxids. + */ + LWLockAcquire(ProcArrayLock, LW_SHARED); + for (index = 0; index < arrayP->numProcs; index++) + { + TransactionId xid; + + /* Fetch xid just once - see GetNewTransactionId */ + xid = UINT32_ACCESS_ONCE(other_xids[index]); + + if (!TransactionIdIsNormal(xid)) + continue; + + if (TransactionIdPrecedes(xid, oldestRunningXid)) + oldestRunningXid = xid; + + /* + * Top-level XID of a transaction is always less than any of its + * subxids, so we don't need to check if any of the subxids are + * smaller than oldestRunningXid + */ + } + LWLockRelease(ProcArrayLock); + + return oldestRunningXid; +} + +/* + * GetOldestSafeDecodingTransactionId -- lowest xid not affected by vacuum + * + * Returns the oldest xid that we can guarantee not to have been affected by + * vacuum, i.e. no rows >= that xid have been vacuumed away unless the + * transaction aborted. Note that the value can (and most of the time will) be + * much more conservative than what really has been affected by vacuum, but we + * currently don't have better data available. + * + * This is useful to initialize the cutoff xid after which a new changeset + * extraction replication slot can start decoding changes. + * + * Must be called with ProcArrayLock held either shared or exclusively, + * although most callers will want to use exclusive mode since it is expected + * that the caller will immediately use the xid to peg the xmin horizon. + */ +TransactionId +GetOldestSafeDecodingTransactionId(bool catalogOnly) +{ + ProcArrayStruct *arrayP = procArray; + TransactionId oldestSafeXid; + int index; + bool recovery_in_progress = RecoveryInProgress(); + + Assert(LWLockHeldByMe(ProcArrayLock)); + + /* + * Acquire XidGenLock, so no transactions can acquire an xid while we're + * running. If no transaction with xid were running concurrently a new xid + * could influence the RecentXmin et al. + * + * We initialize the computation to nextXid since that's guaranteed to be + * a safe, albeit pessimal, value. + */ + LWLockAcquire(XidGenLock, LW_SHARED); + oldestSafeXid = XidFromFullTransactionId(ShmemVariableCache->nextXid); + + /* + * If there's already a slot pegging the xmin horizon, we can start with + * that value, it's guaranteed to be safe since it's computed by this + * routine initially and has been enforced since. We can always use the + * slot's general xmin horizon, but the catalog horizon is only usable + * when only catalog data is going to be looked at. + */ + if (TransactionIdIsValid(procArray->replication_slot_xmin) && + TransactionIdPrecedes(procArray->replication_slot_xmin, + oldestSafeXid)) + oldestSafeXid = procArray->replication_slot_xmin; + + if (catalogOnly && + TransactionIdIsValid(procArray->replication_slot_catalog_xmin) && + TransactionIdPrecedes(procArray->replication_slot_catalog_xmin, + oldestSafeXid)) + oldestSafeXid = procArray->replication_slot_catalog_xmin; + + /* + * If we're not in recovery, we walk over the procarray and collect the + * lowest xid. Since we're called with ProcArrayLock held and have + * acquired XidGenLock, no entries can vanish concurrently, since + * ProcGlobal->xids[i] is only set with XidGenLock held and only cleared + * with ProcArrayLock held. + * + * In recovery we can't lower the safe value besides what we've computed + * above, so we'll have to wait a bit longer there. We unfortunately can + * *not* use KnownAssignedXidsGetOldestXmin() since the KnownAssignedXids + * machinery can miss values and return an older value than is safe. + */ + if (!recovery_in_progress) + { + TransactionId *other_xids = ProcGlobal->xids; + + /* + * Spin over procArray collecting min(ProcGlobal->xids[i]) + */ + for (index = 0; index < arrayP->numProcs; index++) + { + TransactionId xid; + + /* Fetch xid just once - see GetNewTransactionId */ + xid = UINT32_ACCESS_ONCE(other_xids[index]); + + if (!TransactionIdIsNormal(xid)) + continue; + + if (TransactionIdPrecedes(xid, oldestSafeXid)) + oldestSafeXid = xid; + } + } + + LWLockRelease(XidGenLock); + + return oldestSafeXid; +} + +/* + * GetVirtualXIDsDelayingChkpt -- Get the VXIDs of transactions that are + * delaying checkpoint because they have critical actions in progress. + * + * Constructs an array of VXIDs of transactions that are currently in commit + * critical sections, as shown by having specified delayChkptFlags bits set + * in their PGPROC. + * + * Returns a palloc'd array that should be freed by the caller. + * *nvxids is the number of valid entries. + * + * Note that because backends set or clear delayChkptFlags without holding any + * lock, the result is somewhat indeterminate, but we don't really care. Even + * in a multiprocessor with delayed writes to shared memory, it should be + * certain that setting of delayChkptFlags will propagate to shared memory + * when the backend takes a lock, so we cannot fail to see a virtual xact as + * delayChkptFlags if it's already inserted its commit record. Whether it + * takes a little while for clearing of delayChkptFlags to propagate is + * unimportant for correctness. + */ +VirtualTransactionId * +GetVirtualXIDsDelayingChkpt(int *nvxids, int type) +{ + VirtualTransactionId *vxids; + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + Assert(type != 0); + + /* allocate what's certainly enough result space */ + vxids = (VirtualTransactionId *) + palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs); + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + if ((proc->delayChkptFlags & type) != 0) + { + VirtualTransactionId vxid; + + GET_VXID_FROM_PGPROC(vxid, *proc); + if (VirtualTransactionIdIsValid(vxid)) + vxids[count++] = vxid; + } + } + + LWLockRelease(ProcArrayLock); + + *nvxids = count; + return vxids; +} + +/* + * HaveVirtualXIDsDelayingChkpt -- Are any of the specified VXIDs delaying? + * + * This is used with the results of GetVirtualXIDsDelayingChkpt to see if any + * of the specified VXIDs are still in critical sections of code. + * + * Note: this is O(N^2) in the number of vxacts that are/were delaying, but + * those numbers should be small enough for it not to be a problem. + */ +bool +HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type) +{ + bool result = false; + ProcArrayStruct *arrayP = procArray; + int index; + + Assert(type != 0); + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + VirtualTransactionId vxid; + + GET_VXID_FROM_PGPROC(vxid, *proc); + + if ((proc->delayChkptFlags & type) != 0 && + VirtualTransactionIdIsValid(vxid)) + { + int i; + + for (i = 0; i < nvxids; i++) + { + if (VirtualTransactionIdEquals(vxid, vxids[i])) + { + result = true; + break; + } + } + if (result) + break; + } + } + + LWLockRelease(ProcArrayLock); + + return result; +} + +/* + * BackendPidGetProc -- get a backend's PGPROC given its PID + * + * Returns NULL if not found. Note that it is up to the caller to be + * sure that the question remains meaningful for long enough for the + * answer to be used ... + */ +PGPROC * +BackendPidGetProc(int pid) +{ + PGPROC *result; + + if (pid == 0) /* never match dummy PGPROCs */ + return NULL; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + result = BackendPidGetProcWithLock(pid); + + LWLockRelease(ProcArrayLock); + + return result; +} + +/* + * BackendPidGetProcWithLock -- get a backend's PGPROC given its PID + * + * Same as above, except caller must be holding ProcArrayLock. The found + * entry, if any, can be assumed to be valid as long as the lock remains held. + */ +PGPROC * +BackendPidGetProcWithLock(int pid) +{ + PGPROC *result = NULL; + ProcArrayStruct *arrayP = procArray; + int index; + + if (pid == 0) /* never match dummy PGPROCs */ + return NULL; + + for (index = 0; index < arrayP->numProcs; index++) + { + PGPROC *proc = &allProcs[arrayP->pgprocnos[index]]; + + if (proc->pid == pid) + { + result = proc; + break; + } + } + + return result; +} + +/* + * BackendXidGetPid -- get a backend's pid given its XID + * + * Returns 0 if not found or it's a prepared transaction. Note that + * it is up to the caller to be sure that the question remains + * meaningful for long enough for the answer to be used ... + * + * Only main transaction Ids are considered. This function is mainly + * useful for determining what backend owns a lock. + * + * Beware that not every xact has an XID assigned. However, as long as you + * only call this using an XID found on disk, you're safe. + */ +int +BackendXidGetPid(TransactionId xid) +{ + int result = 0; + ProcArrayStruct *arrayP = procArray; + TransactionId *other_xids = ProcGlobal->xids; + int index; + + if (xid == InvalidTransactionId) /* never match invalid xid */ + return 0; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + if (other_xids[index] == xid) + { + result = proc->pid; + break; + } + } + + LWLockRelease(ProcArrayLock); + + return result; +} + +/* + * IsBackendPid -- is a given pid a running backend + * + * This is not called by the backend, but is called by external modules. + */ +bool +IsBackendPid(int pid) +{ + return (BackendPidGetProc(pid) != NULL); +} + + +/* + * GetCurrentVirtualXIDs -- returns an array of currently active VXIDs. + * + * The array is palloc'd. The number of valid entries is returned into *nvxids. + * + * The arguments allow filtering the set of VXIDs returned. Our own process + * is always skipped. In addition: + * If limitXmin is not InvalidTransactionId, skip processes with + * xmin > limitXmin. + * If excludeXmin0 is true, skip processes with xmin = 0. + * If allDbs is false, skip processes attached to other databases. + * If excludeVacuum isn't zero, skip processes for which + * (statusFlags & excludeVacuum) is not zero. + * + * Note: the purpose of the limitXmin and excludeXmin0 parameters is to + * allow skipping backends whose oldest live snapshot is no older than + * some snapshot we have. Since we examine the procarray with only shared + * lock, there are race conditions: a backend could set its xmin just after + * we look. Indeed, on multiprocessors with weak memory ordering, the + * other backend could have set its xmin *before* we look. We know however + * that such a backend must have held shared ProcArrayLock overlapping our + * own hold of ProcArrayLock, else we would see its xmin update. Therefore, + * any snapshot the other backend is taking concurrently with our scan cannot + * consider any transactions as still running that we think are committed + * (since backends must hold ProcArrayLock exclusive to commit). + */ +VirtualTransactionId * +GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0, + bool allDbs, int excludeVacuum, + int *nvxids) +{ + VirtualTransactionId *vxids; + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + /* allocate what's certainly enough result space */ + vxids = (VirtualTransactionId *) + palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs); + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + uint8 statusFlags = ProcGlobal->statusFlags[index]; + + if (proc == MyProc) + continue; + + if (excludeVacuum & statusFlags) + continue; + + if (allDbs || proc->databaseId == MyDatabaseId) + { + /* Fetch xmin just once - might change on us */ + TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin); + + if (excludeXmin0 && !TransactionIdIsValid(pxmin)) + continue; + + /* + * InvalidTransactionId precedes all other XIDs, so a proc that + * hasn't set xmin yet will not be rejected by this test. + */ + if (!TransactionIdIsValid(limitXmin) || + TransactionIdPrecedesOrEquals(pxmin, limitXmin)) + { + VirtualTransactionId vxid; + + GET_VXID_FROM_PGPROC(vxid, *proc); + if (VirtualTransactionIdIsValid(vxid)) + vxids[count++] = vxid; + } + } + } + + LWLockRelease(ProcArrayLock); + + *nvxids = count; + return vxids; +} + +/* + * GetConflictingVirtualXIDs -- returns an array of currently active VXIDs. + * + * Usage is limited to conflict resolution during recovery on standby servers. + * limitXmin is supplied as either latestRemovedXid, or InvalidTransactionId + * in cases where we cannot accurately determine a value for latestRemovedXid. + * + * If limitXmin is InvalidTransactionId then we want to kill everybody, + * so we're not worried if they have a snapshot or not, nor does it really + * matter what type of lock we hold. + * + * All callers that are checking xmins always now supply a valid and useful + * value for limitXmin. The limitXmin is always lower than the lowest + * numbered KnownAssignedXid that is not already a FATAL error. This is + * because we only care about cleanup records that are cleaning up tuple + * versions from committed transactions. In that case they will only occur + * at the point where the record is less than the lowest running xid. That + * allows us to say that if any backend takes a snapshot concurrently with + * us then the conflict assessment made here would never include the snapshot + * that is being derived. So we take LW_SHARED on the ProcArray and allow + * concurrent snapshots when limitXmin is valid. We might think about adding + * Assert(limitXmin < lowest(KnownAssignedXids)) + * but that would not be true in the case of FATAL errors lagging in array, + * but we already know those are bogus anyway, so we skip that test. + * + * If dbOid is valid we skip backends attached to other databases. + * + * Be careful to *not* pfree the result from this function. We reuse + * this array sufficiently often that we use malloc for the result. + */ +VirtualTransactionId * +GetConflictingVirtualXIDs(TransactionId limitXmin, Oid dbOid) +{ + static VirtualTransactionId *vxids; + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + /* + * If first time through, get workspace to remember main XIDs in. We + * malloc it permanently to avoid repeated palloc/pfree overhead. Allow + * result space, remembering room for a terminator. + */ + if (vxids == NULL) + { + vxids = (VirtualTransactionId *) + malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1)); + if (vxids == NULL) + ereport(ERROR, + (errcode(ERRCODE_OUT_OF_MEMORY), + errmsg("out of memory"))); + } + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + /* Exclude prepared transactions */ + if (proc->pid == 0) + continue; + + if (!OidIsValid(dbOid) || + proc->databaseId == dbOid) + { + /* Fetch xmin just once - can't change on us, but good coding */ + TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin); + + /* + * We ignore an invalid pxmin because this means that backend has + * no snapshot currently. We hold a Share lock to avoid contention + * with users taking snapshots. That is not a problem because the + * current xmin is always at least one higher than the latest + * removed xid, so any new snapshot would never conflict with the + * test here. + */ + if (!TransactionIdIsValid(limitXmin) || + (TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin))) + { + VirtualTransactionId vxid; + + GET_VXID_FROM_PGPROC(vxid, *proc); + if (VirtualTransactionIdIsValid(vxid)) + vxids[count++] = vxid; + } + } + } + + LWLockRelease(ProcArrayLock); + + /* add the terminator */ + vxids[count].backendId = InvalidBackendId; + vxids[count].localTransactionId = InvalidLocalTransactionId; + + return vxids; +} + +/* + * CancelVirtualTransaction - used in recovery conflict processing + * + * Returns pid of the process signaled, or 0 if not found. + */ +pid_t +CancelVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode) +{ + return SignalVirtualTransaction(vxid, sigmode, true); +} + +pid_t +SignalVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode, + bool conflictPending) +{ + ProcArrayStruct *arrayP = procArray; + int index; + pid_t pid = 0; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + VirtualTransactionId procvxid; + + GET_VXID_FROM_PGPROC(procvxid, *proc); + + if (procvxid.backendId == vxid.backendId && + procvxid.localTransactionId == vxid.localTransactionId) + { + proc->recoveryConflictPending = conflictPending; + pid = proc->pid; + if (pid != 0) + { + /* + * Kill the pid if it's still here. If not, that's what we + * wanted so ignore any errors. + */ + (void) SendProcSignal(pid, sigmode, vxid.backendId); + } + break; + } + } + + LWLockRelease(ProcArrayLock); + + return pid; +} + +/* + * MinimumActiveBackends --- count backends (other than myself) that are + * in active transactions. Return true if the count exceeds the + * minimum threshold passed. This is used as a heuristic to decide if + * a pre-XLOG-flush delay is worthwhile during commit. + * + * Do not count backends that are blocked waiting for locks, since they are + * not going to get to run until someone else commits. + */ +bool +MinimumActiveBackends(int min) +{ + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + /* Quick short-circuit if no minimum is specified */ + if (min == 0) + return true; + + /* + * Note: for speed, we don't acquire ProcArrayLock. This is a little bit + * bogus, but since we are only testing fields for zero or nonzero, it + * should be OK. The result is only used for heuristic purposes anyway... + */ + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + /* + * Since we're not holding a lock, need to be prepared to deal with + * garbage, as someone could have incremented numProcs but not yet + * filled the structure. + * + * If someone just decremented numProcs, 'proc' could also point to a + * PGPROC entry that's no longer in the array. It still points to a + * PGPROC struct, though, because freed PGPROC entries just go to the + * free list and are recycled. Its contents are nonsense in that case, + * but that's acceptable for this function. + */ + if (pgprocno == -1) + continue; /* do not count deleted entries */ + if (proc == MyProc) + continue; /* do not count myself */ + if (proc->xid == InvalidTransactionId) + continue; /* do not count if no XID assigned */ + if (proc->pid == 0) + continue; /* do not count prepared xacts */ + if (proc->waitLock != NULL) + continue; /* do not count if blocked on a lock */ + count++; + if (count >= min) + break; + } + + return count >= min; +} + +/* + * CountDBBackends --- count backends that are using specified database + */ +int +CountDBBackends(Oid databaseid) +{ + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + if (proc->pid == 0) + continue; /* do not count prepared xacts */ + if (!OidIsValid(databaseid) || + proc->databaseId == databaseid) + count++; + } + + LWLockRelease(ProcArrayLock); + + return count; +} + +/* + * CountDBConnections --- counts database backends ignoring any background + * worker processes + */ +int +CountDBConnections(Oid databaseid) +{ + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + if (proc->pid == 0) + continue; /* do not count prepared xacts */ + if (proc->isBackgroundWorker) + continue; /* do not count background workers */ + if (!OidIsValid(databaseid) || + proc->databaseId == databaseid) + count++; + } + + LWLockRelease(ProcArrayLock); + + return count; +} + +/* + * CancelDBBackends --- cancel backends that are using specified database + */ +void +CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending) +{ + ProcArrayStruct *arrayP = procArray; + int index; + + /* tell all backends to die */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + if (databaseid == InvalidOid || proc->databaseId == databaseid) + { + VirtualTransactionId procvxid; + pid_t pid; + + GET_VXID_FROM_PGPROC(procvxid, *proc); + + proc->recoveryConflictPending = conflictPending; + pid = proc->pid; + if (pid != 0) + { + /* + * Kill the pid if it's still here. If not, that's what we + * wanted so ignore any errors. + */ + (void) SendProcSignal(pid, sigmode, procvxid.backendId); + } + } + } + + LWLockRelease(ProcArrayLock); +} + +/* + * CountUserBackends --- count backends that are used by specified user + */ +int +CountUserBackends(Oid roleid) +{ + ProcArrayStruct *arrayP = procArray; + int count = 0; + int index; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + + if (proc->pid == 0) + continue; /* do not count prepared xacts */ + if (proc->isBackgroundWorker) + continue; /* do not count background workers */ + if (proc->roleId == roleid) + count++; + } + + LWLockRelease(ProcArrayLock); + + return count; +} + +/* + * CountOtherDBBackends -- check for other backends running in the given DB + * + * If there are other backends in the DB, we will wait a maximum of 5 seconds + * for them to exit. Autovacuum backends are encouraged to exit early by + * sending them SIGTERM, but normal user backends are just waited for. + * + * The current backend is always ignored; it is caller's responsibility to + * check whether the current backend uses the given DB, if it's important. + * + * Returns true if there are (still) other backends in the DB, false if not. + * Also, *nbackends and *nprepared are set to the number of other backends + * and prepared transactions in the DB, respectively. + * + * This function is used to interlock DROP DATABASE and related commands + * against there being any active backends in the target DB --- dropping the + * DB while active backends remain would be a Bad Thing. Note that we cannot + * detect here the possibility of a newly-started backend that is trying to + * connect to the doomed database, so additional interlocking is needed during + * backend startup. The caller should normally hold an exclusive lock on the + * target DB before calling this, which is one reason we mustn't wait + * indefinitely. + */ +bool +CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared) +{ + ProcArrayStruct *arrayP = procArray; + +#define MAXAUTOVACPIDS 10 /* max autovacs to SIGTERM per iteration */ + int autovac_pids[MAXAUTOVACPIDS]; + int tries; + + /* 50 tries with 100ms sleep between tries makes 5 sec total wait */ + for (tries = 0; tries < 50; tries++) + { + int nautovacs = 0; + bool found = false; + int index; + + CHECK_FOR_INTERRUPTS(); + + *nbackends = *nprepared = 0; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (index = 0; index < arrayP->numProcs; index++) + { + int pgprocno = arrayP->pgprocnos[index]; + PGPROC *proc = &allProcs[pgprocno]; + uint8 statusFlags = ProcGlobal->statusFlags[index]; + + if (proc->databaseId != databaseId) + continue; + if (proc == MyProc) + continue; + + found = true; + + if (proc->pid == 0) + (*nprepared)++; + else + { + (*nbackends)++; + if ((statusFlags & PROC_IS_AUTOVACUUM) && + nautovacs < MAXAUTOVACPIDS) + autovac_pids[nautovacs++] = proc->pid; + } + } + + LWLockRelease(ProcArrayLock); + + if (!found) + return false; /* no conflicting backends, so done */ + + /* + * Send SIGTERM to any conflicting autovacuums before sleeping. We + * postpone this step until after the loop because we don't want to + * hold ProcArrayLock while issuing kill(). We have no idea what might + * block kill() inside the kernel... + */ + for (index = 0; index < nautovacs; index++) + (void) kill(autovac_pids[index], SIGTERM); /* ignore any error */ + + /* sleep, then try again */ + pg_usleep(100 * 1000L); /* 100ms */ + } + + return true; /* timed out, still conflicts */ +} + +/* + * Terminate existing connections to the specified database. This routine + * is used by the DROP DATABASE command when user has asked to forcefully + * drop the database. + * + * The current backend is always ignored; it is caller's responsibility to + * check whether the current backend uses the given DB, if it's important. + * + * It doesn't allow to terminate the connections even if there is a one + * backend with the prepared transaction in the target database. + */ +void +TerminateOtherDBBackends(Oid databaseId) +{ + ProcArrayStruct *arrayP = procArray; + List *pids = NIL; + int nprepared = 0; + int i; + + LWLockAcquire(ProcArrayLock, LW_SHARED); + + for (i = 0; i < procArray->numProcs; i++) + { + int pgprocno = arrayP->pgprocnos[i]; + PGPROC *proc = &allProcs[pgprocno]; + + if (proc->databaseId != databaseId) + continue; + if (proc == MyProc) + continue; + + if (proc->pid != 0) + pids = lappend_int(pids, proc->pid); + else + nprepared++; + } + + LWLockRelease(ProcArrayLock); + + if (nprepared > 0) + ereport(ERROR, + (errcode(ERRCODE_OBJECT_IN_USE), + errmsg("database \"%s\" is being used by prepared transactions", + get_database_name(databaseId)), + errdetail_plural("There is %d prepared transaction using the database.", + "There are %d prepared transactions using the database.", + nprepared, + nprepared))); + + if (pids) + { + ListCell *lc; + + /* + * Check whether we have the necessary rights to terminate other + * sessions. We don't terminate any session until we ensure that we + * have rights on all the sessions to be terminated. These checks are + * the same as we do in pg_terminate_backend. + * + * In this case we don't raise some warnings - like "PID %d is not a + * PostgreSQL server process", because for us already finished session + * is not a problem. + */ + foreach(lc, pids) + { + int pid = lfirst_int(lc); + PGPROC *proc = BackendPidGetProc(pid); + + if (proc != NULL) + { + /* Only allow superusers to signal superuser-owned backends. */ + if (superuser_arg(proc->roleId) && !superuser()) + ereport(ERROR, + (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), + errmsg("must be a superuser to terminate superuser process"))); + + /* Users can signal backends they have role membership in. */ + if (!has_privs_of_role(GetUserId(), proc->roleId) && + !has_privs_of_role(GetUserId(), ROLE_PG_SIGNAL_BACKEND)) + ereport(ERROR, + (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), + errmsg("must be a member of the role whose process is being terminated or member of pg_signal_backend"))); + } + } + + /* + * There's a race condition here: once we release the ProcArrayLock, + * it's possible for the session to exit before we issue kill. That + * race condition possibility seems too unlikely to worry about. See + * pg_signal_backend. + */ + foreach(lc, pids) + { + int pid = lfirst_int(lc); + PGPROC *proc = BackendPidGetProc(pid); + + if (proc != NULL) + { + /* + * If we have setsid(), signal the backend's whole process + * group + */ +#ifdef HAVE_SETSID + (void) kill(-pid, SIGTERM); +#else + (void) kill(pid, SIGTERM); +#endif + } + } + } +} + +/* + * ProcArraySetReplicationSlotXmin + * + * Install limits to future computations of the xmin horizon to prevent vacuum + * and HOT pruning from removing affected rows still needed by clients with + * replication slots. + */ +void +ProcArraySetReplicationSlotXmin(TransactionId xmin, TransactionId catalog_xmin, + bool already_locked) +{ + Assert(!already_locked || LWLockHeldByMe(ProcArrayLock)); + + if (!already_locked) + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + procArray->replication_slot_xmin = xmin; + procArray->replication_slot_catalog_xmin = catalog_xmin; + + if (!already_locked) + LWLockRelease(ProcArrayLock); + + elog(DEBUG1, "xmin required by slots: data %u, catalog %u", + xmin, catalog_xmin); +} + +/* + * ProcArrayGetReplicationSlotXmin + * + * Return the current slot xmin limits. That's useful to be able to remove + * data that's older than those limits. + */ +void +ProcArrayGetReplicationSlotXmin(TransactionId *xmin, + TransactionId *catalog_xmin) +{ + LWLockAcquire(ProcArrayLock, LW_SHARED); + + if (xmin != NULL) + *xmin = procArray->replication_slot_xmin; + + if (catalog_xmin != NULL) + *catalog_xmin = procArray->replication_slot_catalog_xmin; + + LWLockRelease(ProcArrayLock); +} + +/* + * XidCacheRemoveRunningXids + * + * Remove a bunch of TransactionIds from the list of known-running + * subtransactions for my backend. Both the specified xid and those in + * the xids[] array (of length nxids) are removed from the subxids cache. + * latestXid must be the latest XID among the group. + */ +void +XidCacheRemoveRunningXids(TransactionId xid, + int nxids, const TransactionId *xids, + TransactionId latestXid) +{ + int i, + j; + XidCacheStatus *mysubxidstat; + + Assert(TransactionIdIsValid(xid)); + + /* + * We must hold ProcArrayLock exclusively in order to remove transactions + * from the PGPROC array. (See src/backend/access/transam/README.) It's + * possible this could be relaxed since we know this routine is only used + * to abort subtransactions, but pending closer analysis we'd best be + * conservative. + * + * Note that we do not have to be careful about memory ordering of our own + * reads wrt. GetNewTransactionId() here - only this process can modify + * relevant fields of MyProc/ProcGlobal->xids[]. But we do have to be + * careful about our own writes being well ordered. + */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + mysubxidstat = &ProcGlobal->subxidStates[MyProc->pgxactoff]; + + /* + * Under normal circumstances xid and xids[] will be in increasing order, + * as will be the entries in subxids. Scan backwards to avoid O(N^2) + * behavior when removing a lot of xids. + */ + for (i = nxids - 1; i >= 0; i--) + { + TransactionId anxid = xids[i]; + + for (j = MyProc->subxidStatus.count - 1; j >= 0; j--) + { + if (TransactionIdEquals(MyProc->subxids.xids[j], anxid)) + { + MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1]; + pg_write_barrier(); + mysubxidstat->count--; + MyProc->subxidStatus.count--; + break; + } + } + + /* + * Ordinarily we should have found it, unless the cache has + * overflowed. However it's also possible for this routine to be + * invoked multiple times for the same subtransaction, in case of an + * error during AbortSubTransaction. So instead of Assert, emit a + * debug warning. + */ + if (j < 0 && !MyProc->subxidStatus.overflowed) + elog(WARNING, "did not find subXID %u in MyProc", anxid); + } + + for (j = MyProc->subxidStatus.count - 1; j >= 0; j--) + { + if (TransactionIdEquals(MyProc->subxids.xids[j], xid)) + { + MyProc->subxids.xids[j] = MyProc->subxids.xids[MyProc->subxidStatus.count - 1]; + pg_write_barrier(); + mysubxidstat->count--; + MyProc->subxidStatus.count--; + break; + } + } + /* Ordinarily we should have found it, unless the cache has overflowed */ + if (j < 0 && !MyProc->subxidStatus.overflowed) + elog(WARNING, "did not find subXID %u in MyProc", xid); + + /* Also advance global latestCompletedXid while holding the lock */ + MaintainLatestCompletedXid(latestXid); + + /* ... and xactCompletionCount */ + ShmemVariableCache->xactCompletionCount++; + + LWLockRelease(ProcArrayLock); +} + +#ifdef XIDCACHE_DEBUG + +/* + * Print stats about effectiveness of XID cache + */ +static void +DisplayXidCache(void) +{ + fprintf(stderr, + "XidCache: xmin: %ld, known: %ld, myxact: %ld, latest: %ld, mainxid: %ld, childxid: %ld, knownassigned: %ld, nooflo: %ld, slow: %ld\n", + xc_by_recent_xmin, + xc_by_known_xact, + xc_by_my_xact, + xc_by_latest_xid, + xc_by_main_xid, + xc_by_child_xid, + xc_by_known_assigned, + xc_no_overflow, + xc_slow_answer); +} +#endif /* XIDCACHE_DEBUG */ + +/* + * If rel != NULL, return test state appropriate for relation, otherwise + * return state usable for all relations. The latter may consider XIDs as + * not-yet-visible-to-everyone that a state for a specific relation would + * already consider visible-to-everyone. + * + * This needs to be called while a snapshot is active or registered, otherwise + * there are wraparound and other dangers. + * + * See comment for GlobalVisState for details. + */ +GlobalVisState * +GlobalVisTestFor(Relation rel) +{ + GlobalVisState *state = NULL; + + /* XXX: we should assert that a snapshot is pushed or registered */ + Assert(RecentXmin); + + switch (GlobalVisHorizonKindForRel(rel)) + { + case VISHORIZON_SHARED: + state = &GlobalVisSharedRels; + break; + case VISHORIZON_CATALOG: + state = &GlobalVisCatalogRels; + break; + case VISHORIZON_DATA: + state = &GlobalVisDataRels; + break; + case VISHORIZON_TEMP: + state = &GlobalVisTempRels; + break; + } + + Assert(FullTransactionIdIsValid(state->definitely_needed) && + FullTransactionIdIsValid(state->maybe_needed)); + + return state; +} + +/* + * Return true if it's worth updating the accurate maybe_needed boundary. + * + * As it is somewhat expensive to determine xmin horizons, we don't want to + * repeatedly do so when there is a low likelihood of it being beneficial. + * + * The current heuristic is that we update only if RecentXmin has changed + * since the last update. If the oldest currently running transaction has not + * finished, it is unlikely that recomputing the horizon would be useful. + */ +static bool +GlobalVisTestShouldUpdate(GlobalVisState *state) +{ + /* hasn't been updated yet */ + if (!TransactionIdIsValid(ComputeXidHorizonsResultLastXmin)) + return true; + + /* + * If the maybe_needed/definitely_needed boundaries are the same, it's + * unlikely to be beneficial to refresh boundaries. + */ + if (FullTransactionIdFollowsOrEquals(state->maybe_needed, + state->definitely_needed)) + return false; + + /* does the last snapshot built have a different xmin? */ + return RecentXmin != ComputeXidHorizonsResultLastXmin; +} + +static void +GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons) +{ + GlobalVisSharedRels.maybe_needed = + FullXidRelativeTo(horizons->latest_completed, + horizons->shared_oldest_nonremovable); + GlobalVisCatalogRels.maybe_needed = + FullXidRelativeTo(horizons->latest_completed, + horizons->catalog_oldest_nonremovable); + GlobalVisDataRels.maybe_needed = + FullXidRelativeTo(horizons->latest_completed, + horizons->data_oldest_nonremovable); + GlobalVisTempRels.maybe_needed = + FullXidRelativeTo(horizons->latest_completed, + horizons->temp_oldest_nonremovable); + + /* + * In longer running transactions it's possible that transactions we + * previously needed to treat as running aren't around anymore. So update + * definitely_needed to not be earlier than maybe_needed. + */ + GlobalVisSharedRels.definitely_needed = + FullTransactionIdNewer(GlobalVisSharedRels.maybe_needed, + GlobalVisSharedRels.definitely_needed); + GlobalVisCatalogRels.definitely_needed = + FullTransactionIdNewer(GlobalVisCatalogRels.maybe_needed, + GlobalVisCatalogRels.definitely_needed); + GlobalVisDataRels.definitely_needed = + FullTransactionIdNewer(GlobalVisDataRels.maybe_needed, + GlobalVisDataRels.definitely_needed); + GlobalVisTempRels.definitely_needed = GlobalVisTempRels.maybe_needed; + + ComputeXidHorizonsResultLastXmin = RecentXmin; +} + +/* + * Update boundaries in GlobalVis{Shared,Catalog, Data}Rels + * using ComputeXidHorizons(). + */ +static void +GlobalVisUpdate(void) +{ + ComputeXidHorizonsResult horizons; + + /* updates the horizons as a side-effect */ + ComputeXidHorizons(&horizons); +} + +/* + * Return true if no snapshot still considers fxid to be running. + * + * The state passed needs to have been initialized for the relation fxid is + * from (NULL is also OK), otherwise the result may not be correct. + * + * See comment for GlobalVisState for details. + */ +bool +GlobalVisTestIsRemovableFullXid(GlobalVisState *state, + FullTransactionId fxid) +{ + /* + * If fxid is older than maybe_needed bound, it definitely is visible to + * everyone. + */ + if (FullTransactionIdPrecedes(fxid, state->maybe_needed)) + return true; + + /* + * If fxid is >= definitely_needed bound, it is very likely to still be + * considered running. + */ + if (FullTransactionIdFollowsOrEquals(fxid, state->definitely_needed)) + return false; + + /* + * fxid is between maybe_needed and definitely_needed, i.e. there might or + * might not exist a snapshot considering fxid running. If it makes sense, + * update boundaries and recheck. + */ + if (GlobalVisTestShouldUpdate(state)) + { + GlobalVisUpdate(); + + Assert(FullTransactionIdPrecedes(fxid, state->definitely_needed)); + + return FullTransactionIdPrecedes(fxid, state->maybe_needed); + } + else + return false; +} + +/* + * Wrapper around GlobalVisTestIsRemovableFullXid() for 32bit xids. + * + * It is crucial that this only gets called for xids from a source that + * protects against xid wraparounds (e.g. from a table and thus protected by + * relfrozenxid). + */ +bool +GlobalVisTestIsRemovableXid(GlobalVisState *state, TransactionId xid) +{ + FullTransactionId fxid; + + /* + * Convert 32 bit argument to FullTransactionId. We can do so safely + * because we know the xid has to, at the very least, be between + * [oldestXid, nextFullXid), i.e. within 2 billion of xid. To avoid taking + * a lock to determine either, we can just compare with + * state->definitely_needed, which was based on those value at the time + * the current snapshot was built. + */ + fxid = FullXidRelativeTo(state->definitely_needed, xid); + + return GlobalVisTestIsRemovableFullXid(state, fxid); +} + +/* + * Return FullTransactionId below which all transactions are not considered + * running anymore. + * + * Note: This is less efficient than testing with + * GlobalVisTestIsRemovableFullXid as it likely requires building an accurate + * cutoff, even in the case all the XIDs compared with the cutoff are outside + * [maybe_needed, definitely_needed). + */ +FullTransactionId +GlobalVisTestNonRemovableFullHorizon(GlobalVisState *state) +{ + /* acquire accurate horizon if not already done */ + if (GlobalVisTestShouldUpdate(state)) + GlobalVisUpdate(); + + return state->maybe_needed; +} + +/* Convenience wrapper around GlobalVisTestNonRemovableFullHorizon */ +TransactionId +GlobalVisTestNonRemovableHorizon(GlobalVisState *state) +{ + FullTransactionId cutoff; + + cutoff = GlobalVisTestNonRemovableFullHorizon(state); + + return XidFromFullTransactionId(cutoff); +} + +/* + * Convenience wrapper around GlobalVisTestFor() and + * GlobalVisTestIsRemovableFullXid(), see their comments. + */ +bool +GlobalVisCheckRemovableFullXid(Relation rel, FullTransactionId fxid) +{ + GlobalVisState *state; + + state = GlobalVisTestFor(rel); + + return GlobalVisTestIsRemovableFullXid(state, fxid); +} + +/* + * Convenience wrapper around GlobalVisTestFor() and + * GlobalVisTestIsRemovableXid(), see their comments. + */ +bool +GlobalVisCheckRemovableXid(Relation rel, TransactionId xid) +{ + GlobalVisState *state; + + state = GlobalVisTestFor(rel); + + return GlobalVisTestIsRemovableXid(state, xid); +} + +/* + * Safely retract *xid by retreat_by, store the result in *xid. + * + * Need to be careful to prevent *xid from retreating below + * FirstNormalTransactionId during epoch 0. This is important to prevent + * generating xids that cannot be converted to a FullTransactionId without + * wrapping around. + * + * If retreat_by would lead to a too old xid, FirstNormalTransactionId is + * returned instead. + */ +static void +TransactionIdRetreatSafely(TransactionId *xid, int retreat_by, FullTransactionId rel) +{ + TransactionId original_xid = *xid; + FullTransactionId fxid; + uint64 fxid_i; + + Assert(TransactionIdIsNormal(original_xid)); + Assert(retreat_by >= 0); /* relevant GUCs are stored as ints */ + AssertTransactionIdInAllowableRange(original_xid); + + if (retreat_by == 0) + return; + + fxid = FullXidRelativeTo(rel, original_xid); + fxid_i = U64FromFullTransactionId(fxid); + + if ((fxid_i - FirstNormalTransactionId) <= retreat_by) + *xid = FirstNormalTransactionId; + else + { + *xid = TransactionIdRetreatedBy(original_xid, retreat_by); + Assert(TransactionIdIsNormal(*xid)); + Assert(NormalTransactionIdPrecedes(*xid, original_xid)); + } +} + +/* + * Convert a 32 bit transaction id into 64 bit transaction id, by assuming it + * is within MaxTransactionId / 2 of XidFromFullTransactionId(rel). + * + * Be very careful about when to use this function. It can only safely be used + * when there is a guarantee that xid is within MaxTransactionId / 2 xids of + * rel. That e.g. can be guaranteed if the caller assures a snapshot is + * held by the backend and xid is from a table (where vacuum/freezing ensures + * the xid has to be within that range), or if xid is from the procarray and + * prevents xid wraparound that way. + */ +static inline FullTransactionId +FullXidRelativeTo(FullTransactionId rel, TransactionId xid) +{ + TransactionId rel_xid = XidFromFullTransactionId(rel); + + Assert(TransactionIdIsValid(xid)); + Assert(TransactionIdIsValid(rel_xid)); + + /* not guaranteed to find issues, but likely to catch mistakes */ + AssertTransactionIdInAllowableRange(xid); + + return FullTransactionIdFromU64(U64FromFullTransactionId(rel) + + (int32) (xid - rel_xid)); +} + + +/* ---------------------------------------------- + * KnownAssignedTransactionIds sub-module + * ---------------------------------------------- + */ + +/* + * In Hot Standby mode, we maintain a list of transactions that are (or were) + * running on the primary at the current point in WAL. These XIDs must be + * treated as running by standby transactions, even though they are not in + * the standby server's PGPROC array. + * + * We record all XIDs that we know have been assigned. That includes all the + * XIDs seen in WAL records, plus all unobserved XIDs that we can deduce have + * been assigned. We can deduce the existence of unobserved XIDs because we + * know XIDs are assigned in sequence, with no gaps. The KnownAssignedXids + * list expands as new XIDs are observed or inferred, and contracts when + * transaction completion records arrive. + * + * During hot standby we do not fret too much about the distinction between + * top-level XIDs and subtransaction XIDs. We store both together in the + * KnownAssignedXids list. In backends, this is copied into snapshots in + * GetSnapshotData(), taking advantage of the fact that XidInMVCCSnapshot() + * doesn't care about the distinction either. Subtransaction XIDs are + * effectively treated as top-level XIDs and in the typical case pg_subtrans + * links are *not* maintained (which does not affect visibility). + * + * We have room in KnownAssignedXids and in snapshots to hold maxProcs * + * (1 + PGPROC_MAX_CACHED_SUBXIDS) XIDs, so every primary transaction must + * report its subtransaction XIDs in a WAL XLOG_XACT_ASSIGNMENT record at + * least every PGPROC_MAX_CACHED_SUBXIDS. When we receive one of these + * records, we mark the subXIDs as children of the top XID in pg_subtrans, + * and then remove them from KnownAssignedXids. This prevents overflow of + * KnownAssignedXids and snapshots, at the cost that status checks for these + * subXIDs will take a slower path through TransactionIdIsInProgress(). + * This means that KnownAssignedXids is not necessarily complete for subXIDs, + * though it should be complete for top-level XIDs; this is the same situation + * that holds with respect to the PGPROC entries in normal running. + * + * When we throw away subXIDs from KnownAssignedXids, we need to keep track of + * that, similarly to tracking overflow of a PGPROC's subxids array. We do + * that by remembering the lastOverflowedXid, ie the last thrown-away subXID. + * As long as that is within the range of interesting XIDs, we have to assume + * that subXIDs are missing from snapshots. (Note that subXID overflow occurs + * on primary when 65th subXID arrives, whereas on standby it occurs when 64th + * subXID arrives - that is not an error.) + * + * Should a backend on primary somehow disappear before it can write an abort + * record, then we just leave those XIDs in KnownAssignedXids. They actually + * aborted but we think they were running; the distinction is irrelevant + * because either way any changes done by the transaction are not visible to + * backends in the standby. We prune KnownAssignedXids when + * XLOG_RUNNING_XACTS arrives, to forestall possible overflow of the + * array due to such dead XIDs. + */ + +/* + * RecordKnownAssignedTransactionIds + * Record the given XID in KnownAssignedXids, as well as any preceding + * unobserved XIDs. + * + * RecordKnownAssignedTransactionIds() should be run for *every* WAL record + * associated with a transaction. Must be called for each record after we + * have executed StartupCLOG() et al, since we must ExtendCLOG() etc.. + * + * Called during recovery in analogy with and in place of GetNewTransactionId() + */ +void +RecordKnownAssignedTransactionIds(TransactionId xid) +{ + Assert(standbyState >= STANDBY_INITIALIZED); + Assert(TransactionIdIsValid(xid)); + Assert(TransactionIdIsValid(latestObservedXid)); + + elog(trace_recovery(DEBUG4), "record known xact %u latestObservedXid %u", + xid, latestObservedXid); + + /* + * When a newly observed xid arrives, it is frequently the case that it is + * *not* the next xid in sequence. When this occurs, we must treat the + * intervening xids as running also. + */ + if (TransactionIdFollows(xid, latestObservedXid)) + { + TransactionId next_expected_xid; + + /* + * Extend subtrans like we do in GetNewTransactionId() during normal + * operation using individual extend steps. Note that we do not need + * to extend clog since its extensions are WAL logged. + * + * This part has to be done regardless of standbyState since we + * immediately start assigning subtransactions to their toplevel + * transactions. + */ + next_expected_xid = latestObservedXid; + while (TransactionIdPrecedes(next_expected_xid, xid)) + { + TransactionIdAdvance(next_expected_xid); + ExtendSUBTRANS(next_expected_xid); + } + Assert(next_expected_xid == xid); + + /* + * If the KnownAssignedXids machinery isn't up yet, there's nothing + * more to do since we don't track assigned xids yet. + */ + if (standbyState <= STANDBY_INITIALIZED) + { + latestObservedXid = xid; + return; + } + + /* + * Add (latestObservedXid, xid] onto the KnownAssignedXids array. + */ + next_expected_xid = latestObservedXid; + TransactionIdAdvance(next_expected_xid); + KnownAssignedXidsAdd(next_expected_xid, xid, false); + + /* + * Now we can advance latestObservedXid + */ + latestObservedXid = xid; + + /* ShmemVariableCache->nextXid must be beyond any observed xid */ + AdvanceNextFullTransactionIdPastXid(latestObservedXid); + } +} + +/* + * ExpireTreeKnownAssignedTransactionIds + * Remove the given XIDs from KnownAssignedXids. + * + * Called during recovery in analogy with and in place of ProcArrayEndTransaction() + */ +void +ExpireTreeKnownAssignedTransactionIds(TransactionId xid, int nsubxids, + TransactionId *subxids, TransactionId max_xid) +{ + Assert(standbyState >= STANDBY_INITIALIZED); + + /* + * Uses same locking as transaction commit + */ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + KnownAssignedXidsRemoveTree(xid, nsubxids, subxids); + + /* As in ProcArrayEndTransaction, advance latestCompletedXid */ + MaintainLatestCompletedXidRecovery(max_xid); + + /* ... and xactCompletionCount */ + ShmemVariableCache->xactCompletionCount++; + + LWLockRelease(ProcArrayLock); +} + +/* + * ExpireAllKnownAssignedTransactionIds + * Remove all entries in KnownAssignedXids and reset lastOverflowedXid. + */ +void +ExpireAllKnownAssignedTransactionIds(void) +{ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + KnownAssignedXidsRemovePreceding(InvalidTransactionId); + + /* + * Reset lastOverflowedXid. Currently, lastOverflowedXid has no use after + * the call of this function. But do this for unification with what + * ExpireOldKnownAssignedTransactionIds() do. + */ + procArray->lastOverflowedXid = InvalidTransactionId; + LWLockRelease(ProcArrayLock); +} + +/* + * ExpireOldKnownAssignedTransactionIds + * Remove KnownAssignedXids entries preceding the given XID and + * potentially reset lastOverflowedXid. + */ +void +ExpireOldKnownAssignedTransactionIds(TransactionId xid) +{ + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + /* + * Reset lastOverflowedXid if we know all transactions that have been + * possibly running are being gone. Not doing so could cause an incorrect + * lastOverflowedXid value, which makes extra snapshots be marked as + * suboverflowed. + */ + if (TransactionIdPrecedes(procArray->lastOverflowedXid, xid)) + procArray->lastOverflowedXid = InvalidTransactionId; + KnownAssignedXidsRemovePreceding(xid); + LWLockRelease(ProcArrayLock); +} + +/* + * KnownAssignedTransactionIdsIdleMaintenance + * Opportunistically do maintenance work when the startup process + * is about to go idle. + */ +void +KnownAssignedTransactionIdsIdleMaintenance(void) +{ + KnownAssignedXidsCompress(KAX_STARTUP_PROCESS_IDLE, false); +} + + +/* + * Private module functions to manipulate KnownAssignedXids + * + * There are 5 main uses of the KnownAssignedXids data structure: + * + * * backends taking snapshots - all valid XIDs need to be copied out + * * backends seeking to determine presence of a specific XID + * * startup process adding new known-assigned XIDs + * * startup process removing specific XIDs as transactions end + * * startup process pruning array when special WAL records arrive + * + * This data structure is known to be a hot spot during Hot Standby, so we + * go to some lengths to make these operations as efficient and as concurrent + * as possible. + * + * The XIDs are stored in an array in sorted order --- TransactionIdPrecedes + * order, to be exact --- to allow binary search for specific XIDs. Note: + * in general TransactionIdPrecedes would not provide a total order, but + * we know that the entries present at any instant should not extend across + * a large enough fraction of XID space to wrap around (the primary would + * shut down for fear of XID wrap long before that happens). So it's OK to + * use TransactionIdPrecedes as a binary-search comparator. + * + * It's cheap to maintain the sortedness during insertions, since new known + * XIDs are always reported in XID order; we just append them at the right. + * + * To keep individual deletions cheap, we need to allow gaps in the array. + * This is implemented by marking array elements as valid or invalid using + * the parallel boolean array KnownAssignedXidsValid[]. A deletion is done + * by setting KnownAssignedXidsValid[i] to false, *without* clearing the + * XID entry itself. This preserves the property that the XID entries are + * sorted, so we can do binary searches easily. Periodically we compress + * out the unused entries; that's much cheaper than having to compress the + * array immediately on every deletion. + * + * The actually valid items in KnownAssignedXids[] and KnownAssignedXidsValid[] + * are those with indexes tail <= i < head; items outside this subscript range + * have unspecified contents. When head reaches the end of the array, we + * force compression of unused entries rather than wrapping around, since + * allowing wraparound would greatly complicate the search logic. We maintain + * an explicit tail pointer so that pruning of old XIDs can be done without + * immediately moving the array contents. In most cases only a small fraction + * of the array contains valid entries at any instant. + * + * Although only the startup process can ever change the KnownAssignedXids + * data structure, we still need interlocking so that standby backends will + * not observe invalid intermediate states. The convention is that backends + * must hold shared ProcArrayLock to examine the array. To remove XIDs from + * the array, the startup process must hold ProcArrayLock exclusively, for + * the usual transactional reasons (compare commit/abort of a transaction + * during normal running). Compressing unused entries out of the array + * likewise requires exclusive lock. To add XIDs to the array, we just insert + * them into slots to the right of the head pointer and then advance the head + * pointer. This wouldn't require any lock at all, except that on machines + * with weak memory ordering we need to be careful that other processors + * see the array element changes before they see the head pointer change. + * We handle this by using a spinlock to protect reads and writes of the + * head/tail pointers. (We could dispense with the spinlock if we were to + * create suitable memory access barrier primitives and use those instead.) + * The spinlock must be taken to read or write the head/tail pointers unless + * the caller holds ProcArrayLock exclusively. + * + * Algorithmic analysis: + * + * If we have a maximum of M slots, with N XIDs currently spread across + * S elements then we have N <= S <= M always. + * + * * Adding a new XID is O(1) and needs little locking (unless compression + * must happen) + * * Compressing the array is O(S) and requires exclusive lock + * * Removing an XID is O(logS) and requires exclusive lock + * * Taking a snapshot is O(S) and requires shared lock + * * Checking for an XID is O(logS) and requires shared lock + * + * In comparison, using a hash table for KnownAssignedXids would mean that + * taking snapshots would be O(M). If we can maintain S << M then the + * sorted array technique will deliver significantly faster snapshots. + * If we try to keep S too small then we will spend too much time compressing, + * so there is an optimal point for any workload mix. We use a heuristic to + * decide when to compress the array, though trimming also helps reduce + * frequency of compressing. The heuristic requires us to track the number of + * currently valid XIDs in the array (N). Except in special cases, we'll + * compress when S >= 2N. Bounding S at 2N in turn bounds the time for + * taking a snapshot to be O(N), which it would have to be anyway. + */ + + +/* + * Compress KnownAssignedXids by shifting valid data down to the start of the + * array, removing any gaps. + * + * A compression step is forced if "reason" is KAX_NO_SPACE, otherwise + * we do it only if a heuristic indicates it's a good time to do it. + * + * Compression requires holding ProcArrayLock in exclusive mode. + * Caller must pass haveLock = true if it already holds the lock. + */ +static void +KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock) +{ + ProcArrayStruct *pArray = procArray; + int head, + tail, + nelements; + int compress_index; + int i; + + /* Counters for compression heuristics */ + static unsigned int transactionEndsCounter; + static TimestampTz lastCompressTs; + + /* Tuning constants */ +#define KAX_COMPRESS_FREQUENCY 128 /* in transactions */ +#define KAX_COMPRESS_IDLE_INTERVAL 1000 /* in ms */ + + /* + * Since only the startup process modifies the head/tail pointers, we + * don't need a lock to read them here. + */ + head = pArray->headKnownAssignedXids; + tail = pArray->tailKnownAssignedXids; + nelements = head - tail; + + /* + * If we can choose whether to compress, use a heuristic to avoid + * compressing too often or not often enough. "Compress" here simply + * means moving the values to the beginning of the array, so it is not as + * complex or costly as typical data compression algorithms. + */ + if (nelements == pArray->numKnownAssignedXids) + { + /* + * When there are no gaps between head and tail, don't bother to + * compress, except in the KAX_NO_SPACE case where we must compress to + * create some space after the head. + */ + if (reason != KAX_NO_SPACE) + return; + } + else if (reason == KAX_TRANSACTION_END) + { + /* + * Consider compressing only once every so many commits. Frequency + * determined by benchmarks. + */ + if ((transactionEndsCounter++) % KAX_COMPRESS_FREQUENCY != 0) + return; + + /* + * Furthermore, compress only if the used part of the array is less + * than 50% full (see comments above). + */ + if (nelements < 2 * pArray->numKnownAssignedXids) + return; + } + else if (reason == KAX_STARTUP_PROCESS_IDLE) + { + /* + * We're about to go idle for lack of new WAL, so we might as well + * compress. But not too often, to avoid ProcArray lock contention + * with readers. + */ + if (lastCompressTs != 0) + { + TimestampTz compress_after; + + compress_after = TimestampTzPlusMilliseconds(lastCompressTs, + KAX_COMPRESS_IDLE_INTERVAL); + if (GetCurrentTimestamp() < compress_after) + return; + } + } + + /* Need to compress, so get the lock if we don't have it. */ + if (!haveLock) + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + /* + * We compress the array by reading the valid values from tail to head, + * re-aligning data to 0th element. + */ + compress_index = 0; + for (i = tail; i < head; i++) + { + if (KnownAssignedXidsValid[i]) + { + KnownAssignedXids[compress_index] = KnownAssignedXids[i]; + KnownAssignedXidsValid[compress_index] = true; + compress_index++; + } + } + Assert(compress_index == pArray->numKnownAssignedXids); + + pArray->tailKnownAssignedXids = 0; + pArray->headKnownAssignedXids = compress_index; + + if (!haveLock) + LWLockRelease(ProcArrayLock); + + /* Update timestamp for maintenance. No need to hold lock for this. */ + lastCompressTs = GetCurrentTimestamp(); +} + +/* + * Add xids into KnownAssignedXids at the head of the array. + * + * xids from from_xid to to_xid, inclusive, are added to the array. + * + * If exclusive_lock is true then caller already holds ProcArrayLock in + * exclusive mode, so we need no extra locking here. Else caller holds no + * lock, so we need to be sure we maintain sufficient interlocks against + * concurrent readers. (Only the startup process ever calls this, so no need + * to worry about concurrent writers.) + */ +static void +KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid, + bool exclusive_lock) +{ + ProcArrayStruct *pArray = procArray; + TransactionId next_xid; + int head, + tail; + int nxids; + int i; + + Assert(TransactionIdPrecedesOrEquals(from_xid, to_xid)); + + /* + * Calculate how many array slots we'll need. Normally this is cheap; in + * the unusual case where the XIDs cross the wrap point, we do it the hard + * way. + */ + if (to_xid >= from_xid) + nxids = to_xid - from_xid + 1; + else + { + nxids = 1; + next_xid = from_xid; + while (TransactionIdPrecedes(next_xid, to_xid)) + { + nxids++; + TransactionIdAdvance(next_xid); + } + } + + /* + * Since only the startup process modifies the head/tail pointers, we + * don't need a lock to read them here. + */ + head = pArray->headKnownAssignedXids; + tail = pArray->tailKnownAssignedXids; + + Assert(head >= 0 && head <= pArray->maxKnownAssignedXids); + Assert(tail >= 0 && tail < pArray->maxKnownAssignedXids); + + /* + * Verify that insertions occur in TransactionId sequence. Note that even + * if the last existing element is marked invalid, it must still have a + * correctly sequenced XID value. + */ + if (head > tail && + TransactionIdFollowsOrEquals(KnownAssignedXids[head - 1], from_xid)) + { + KnownAssignedXidsDisplay(LOG); + elog(ERROR, "out-of-order XID insertion in KnownAssignedXids"); + } + + /* + * If our xids won't fit in the remaining space, compress out free space + */ + if (head + nxids > pArray->maxKnownAssignedXids) + { + KnownAssignedXidsCompress(KAX_NO_SPACE, exclusive_lock); + + head = pArray->headKnownAssignedXids; + /* note: we no longer care about the tail pointer */ + + /* + * If it still won't fit then we're out of memory + */ + if (head + nxids > pArray->maxKnownAssignedXids) + elog(ERROR, "too many KnownAssignedXids"); + } + + /* Now we can insert the xids into the space starting at head */ + next_xid = from_xid; + for (i = 0; i < nxids; i++) + { + KnownAssignedXids[head] = next_xid; + KnownAssignedXidsValid[head] = true; + TransactionIdAdvance(next_xid); + head++; + } + + /* Adjust count of number of valid entries */ + pArray->numKnownAssignedXids += nxids; + + /* + * Now update the head pointer. We use a spinlock to protect this + * pointer, not because the update is likely to be non-atomic, but to + * ensure that other processors see the above array updates before they + * see the head pointer change. + * + * If we're holding ProcArrayLock exclusively, there's no need to take the + * spinlock. + */ + if (exclusive_lock) + pArray->headKnownAssignedXids = head; + else + { + SpinLockAcquire(&pArray->known_assigned_xids_lck); + pArray->headKnownAssignedXids = head; + SpinLockRelease(&pArray->known_assigned_xids_lck); + } +} + +/* + * KnownAssignedXidsSearch + * + * Searches KnownAssignedXids for a specific xid and optionally removes it. + * Returns true if it was found, false if not. + * + * Caller must hold ProcArrayLock in shared or exclusive mode. + * Exclusive lock must be held for remove = true. + */ +static bool +KnownAssignedXidsSearch(TransactionId xid, bool remove) +{ + ProcArrayStruct *pArray = procArray; + int first, + last; + int head; + int tail; + int result_index = -1; + + if (remove) + { + /* we hold ProcArrayLock exclusively, so no need for spinlock */ + tail = pArray->tailKnownAssignedXids; + head = pArray->headKnownAssignedXids; + } + else + { + /* take spinlock to ensure we see up-to-date array contents */ + SpinLockAcquire(&pArray->known_assigned_xids_lck); + tail = pArray->tailKnownAssignedXids; + head = pArray->headKnownAssignedXids; + SpinLockRelease(&pArray->known_assigned_xids_lck); + } + + /* + * Standard binary search. Note we can ignore the KnownAssignedXidsValid + * array here, since even invalid entries will contain sorted XIDs. + */ + first = tail; + last = head - 1; + while (first <= last) + { + int mid_index; + TransactionId mid_xid; + + mid_index = (first + last) / 2; + mid_xid = KnownAssignedXids[mid_index]; + + if (xid == mid_xid) + { + result_index = mid_index; + break; + } + else if (TransactionIdPrecedes(xid, mid_xid)) + last = mid_index - 1; + else + first = mid_index + 1; + } + + if (result_index < 0) + return false; /* not in array */ + + if (!KnownAssignedXidsValid[result_index]) + return false; /* in array, but invalid */ + + if (remove) + { + KnownAssignedXidsValid[result_index] = false; + + pArray->numKnownAssignedXids--; + Assert(pArray->numKnownAssignedXids >= 0); + + /* + * If we're removing the tail element then advance tail pointer over + * any invalid elements. This will speed future searches. + */ + if (result_index == tail) + { + tail++; + while (tail < head && !KnownAssignedXidsValid[tail]) + tail++; + if (tail >= head) + { + /* Array is empty, so we can reset both pointers */ + pArray->headKnownAssignedXids = 0; + pArray->tailKnownAssignedXids = 0; + } + else + { + pArray->tailKnownAssignedXids = tail; + } + } + } + + return true; +} + +/* + * Is the specified XID present in KnownAssignedXids[]? + * + * Caller must hold ProcArrayLock in shared or exclusive mode. + */ +static bool +KnownAssignedXidExists(TransactionId xid) +{ + Assert(TransactionIdIsValid(xid)); + + return KnownAssignedXidsSearch(xid, false); +} + +/* + * Remove the specified XID from KnownAssignedXids[]. + * + * Caller must hold ProcArrayLock in exclusive mode. + */ +static void +KnownAssignedXidsRemove(TransactionId xid) +{ + Assert(TransactionIdIsValid(xid)); + + elog(trace_recovery(DEBUG4), "remove KnownAssignedXid %u", xid); + + /* + * Note: we cannot consider it an error to remove an XID that's not + * present. We intentionally remove subxact IDs while processing + * XLOG_XACT_ASSIGNMENT, to avoid array overflow. Then those XIDs will be + * removed again when the top-level xact commits or aborts. + * + * It might be possible to track such XIDs to distinguish this case from + * actual errors, but it would be complicated and probably not worth it. + * So, just ignore the search result. + */ + (void) KnownAssignedXidsSearch(xid, true); +} + +/* + * KnownAssignedXidsRemoveTree + * Remove xid (if it's not InvalidTransactionId) and all the subxids. + * + * Caller must hold ProcArrayLock in exclusive mode. + */ +static void +KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids, + TransactionId *subxids) +{ + int i; + + if (TransactionIdIsValid(xid)) + KnownAssignedXidsRemove(xid); + + for (i = 0; i < nsubxids; i++) + KnownAssignedXidsRemove(subxids[i]); + + /* Opportunistically compress the array */ + KnownAssignedXidsCompress(KAX_TRANSACTION_END, true); +} + +/* + * Prune KnownAssignedXids up to, but *not* including xid. If xid is invalid + * then clear the whole table. + * + * Caller must hold ProcArrayLock in exclusive mode. + */ +static void +KnownAssignedXidsRemovePreceding(TransactionId removeXid) +{ + ProcArrayStruct *pArray = procArray; + int count = 0; + int head, + tail, + i; + + if (!TransactionIdIsValid(removeXid)) + { + elog(trace_recovery(DEBUG4), "removing all KnownAssignedXids"); + pArray->numKnownAssignedXids = 0; + pArray->headKnownAssignedXids = pArray->tailKnownAssignedXids = 0; + return; + } + + elog(trace_recovery(DEBUG4), "prune KnownAssignedXids to %u", removeXid); + + /* + * Mark entries invalid starting at the tail. Since array is sorted, we + * can stop as soon as we reach an entry >= removeXid. + */ + tail = pArray->tailKnownAssignedXids; + head = pArray->headKnownAssignedXids; + + for (i = tail; i < head; i++) + { + if (KnownAssignedXidsValid[i]) + { + TransactionId knownXid = KnownAssignedXids[i]; + + if (TransactionIdFollowsOrEquals(knownXid, removeXid)) + break; + + if (!StandbyTransactionIdIsPrepared(knownXid)) + { + KnownAssignedXidsValid[i] = false; + count++; + } + } + } + + pArray->numKnownAssignedXids -= count; + Assert(pArray->numKnownAssignedXids >= 0); + + /* + * Advance the tail pointer if we've marked the tail item invalid. + */ + for (i = tail; i < head; i++) + { + if (KnownAssignedXidsValid[i]) + break; + } + if (i >= head) + { + /* Array is empty, so we can reset both pointers */ + pArray->headKnownAssignedXids = 0; + pArray->tailKnownAssignedXids = 0; + } + else + { + pArray->tailKnownAssignedXids = i; + } + + /* Opportunistically compress the array */ + KnownAssignedXidsCompress(KAX_PRUNE, true); +} + +/* + * KnownAssignedXidsGet - Get an array of xids by scanning KnownAssignedXids. + * We filter out anything >= xmax. + * + * Returns the number of XIDs stored into xarray[]. Caller is responsible + * that array is large enough. + * + * Caller must hold ProcArrayLock in (at least) shared mode. + */ +static int +KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax) +{ + TransactionId xtmp = InvalidTransactionId; + + return KnownAssignedXidsGetAndSetXmin(xarray, &xtmp, xmax); +} + +/* + * KnownAssignedXidsGetAndSetXmin - as KnownAssignedXidsGet, plus + * we reduce *xmin to the lowest xid value seen if not already lower. + * + * Caller must hold ProcArrayLock in (at least) shared mode. + */ +static int +KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, TransactionId *xmin, + TransactionId xmax) +{ + int count = 0; + int head, + tail; + int i; + + /* + * Fetch head just once, since it may change while we loop. We can stop + * once we reach the initially seen head, since we are certain that an xid + * cannot enter and then leave the array while we hold ProcArrayLock. We + * might miss newly-added xids, but they should be >= xmax so irrelevant + * anyway. + * + * Must take spinlock to ensure we see up-to-date array contents. + */ + SpinLockAcquire(&procArray->known_assigned_xids_lck); + tail = procArray->tailKnownAssignedXids; + head = procArray->headKnownAssignedXids; + SpinLockRelease(&procArray->known_assigned_xids_lck); + + for (i = tail; i < head; i++) + { + /* Skip any gaps in the array */ + if (KnownAssignedXidsValid[i]) + { + TransactionId knownXid = KnownAssignedXids[i]; + + /* + * Update xmin if required. Only the first XID need be checked, + * since the array is sorted. + */ + if (count == 0 && + TransactionIdPrecedes(knownXid, *xmin)) + *xmin = knownXid; + + /* + * Filter out anything >= xmax, again relying on sorted property + * of array. + */ + if (TransactionIdIsValid(xmax) && + TransactionIdFollowsOrEquals(knownXid, xmax)) + break; + + /* Add knownXid into output array */ + xarray[count++] = knownXid; + } + } + + return count; +} + +/* + * Get oldest XID in the KnownAssignedXids array, or InvalidTransactionId + * if nothing there. + */ +static TransactionId +KnownAssignedXidsGetOldestXmin(void) +{ + int head, + tail; + int i; + + /* + * Fetch head just once, since it may change while we loop. + */ + SpinLockAcquire(&procArray->known_assigned_xids_lck); + tail = procArray->tailKnownAssignedXids; + head = procArray->headKnownAssignedXids; + SpinLockRelease(&procArray->known_assigned_xids_lck); + + for (i = tail; i < head; i++) + { + /* Skip any gaps in the array */ + if (KnownAssignedXidsValid[i]) + return KnownAssignedXids[i]; + } + + return InvalidTransactionId; +} + +/* + * Display KnownAssignedXids to provide debug trail + * + * Currently this is only called within startup process, so we need no + * special locking. + * + * Note this is pretty expensive, and much of the expense will be incurred + * even if the elog message will get discarded. It's not currently called + * in any performance-critical places, however, so no need to be tenser. + */ +static void +KnownAssignedXidsDisplay(int trace_level) +{ + ProcArrayStruct *pArray = procArray; + StringInfoData buf; + int head, + tail, + i; + int nxids = 0; + + tail = pArray->tailKnownAssignedXids; + head = pArray->headKnownAssignedXids; + + initStringInfo(&buf); + + for (i = tail; i < head; i++) + { + if (KnownAssignedXidsValid[i]) + { + nxids++; + appendStringInfo(&buf, "[%d]=%u ", i, KnownAssignedXids[i]); + } + } + + elog(trace_level, "%d KnownAssignedXids (num=%d tail=%d head=%d) %s", + nxids, + pArray->numKnownAssignedXids, + pArray->tailKnownAssignedXids, + pArray->headKnownAssignedXids, + buf.data); + + pfree(buf.data); +} + +/* + * KnownAssignedXidsReset + * Resets KnownAssignedXids to be empty + */ +static void +KnownAssignedXidsReset(void) +{ + ProcArrayStruct *pArray = procArray; + + LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); + + pArray->numKnownAssignedXids = 0; + pArray->tailKnownAssignedXids = 0; + pArray->headKnownAssignedXids = 0; + + LWLockRelease(ProcArrayLock); +} |