summaryrefslogtreecommitdiffstats
path: root/servo/components/hashglobe/src/hash_map.rs
diff options
context:
space:
mode:
Diffstat (limited to 'servo/components/hashglobe/src/hash_map.rs')
-rw-r--r--servo/components/hashglobe/src/hash_map.rs3087
1 files changed, 3087 insertions, 0 deletions
diff --git a/servo/components/hashglobe/src/hash_map.rs b/servo/components/hashglobe/src/hash_map.rs
new file mode 100644
index 0000000000..d2893627e1
--- /dev/null
+++ b/servo/components/hashglobe/src/hash_map.rs
@@ -0,0 +1,3087 @@
+// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use self::Entry::*;
+use self::VacantEntryState::*;
+
+use std::borrow::Borrow;
+use std::cmp::max;
+use std::fmt::{self, Debug};
+#[allow(deprecated)]
+use std::hash::{BuildHasher, Hash};
+use std::iter::FromIterator;
+use std::mem::{self, replace};
+use std::ops::{Deref, Index};
+
+use super::table::BucketState::{Empty, Full};
+use super::table::{self, Bucket, EmptyBucket, FullBucket, FullBucketMut, RawTable, SafeHash};
+
+use crate::FailedAllocationError;
+
+const MIN_NONZERO_RAW_CAPACITY: usize = 32; // must be a power of two
+
+/// The default behavior of HashMap implements a maximum load factor of 90.9%.
+#[derive(Clone)]
+struct DefaultResizePolicy;
+
+impl DefaultResizePolicy {
+ fn new() -> DefaultResizePolicy {
+ DefaultResizePolicy
+ }
+
+ /// A hash map's "capacity" is the number of elements it can hold without
+ /// being resized. Its "raw capacity" is the number of slots required to
+ /// provide that capacity, accounting for maximum loading. The raw capacity
+ /// is always zero or a power of two.
+ #[inline]
+ fn raw_capacity(&self, len: usize) -> usize {
+ if len == 0 {
+ 0
+ } else {
+ // 1. Account for loading: `raw_capacity >= len * 1.1`.
+ // 2. Ensure it is a power of two.
+ // 3. Ensure it is at least the minimum size.
+ let mut raw_cap = len * 11 / 10;
+ assert!(raw_cap >= len, "raw_cap overflow");
+ raw_cap = raw_cap
+ .checked_next_power_of_two()
+ .expect("raw_capacity overflow");
+ raw_cap = max(MIN_NONZERO_RAW_CAPACITY, raw_cap);
+ raw_cap
+ }
+ }
+
+ /// The capacity of the given raw capacity.
+ #[inline]
+ fn capacity(&self, raw_cap: usize) -> usize {
+ // This doesn't have to be checked for overflow since allocation size
+ // in bytes will overflow earlier than multiplication by 10.
+ //
+ // As per https://github.com/rust-lang/rust/pull/30991 this is updated
+ // to be: (raw_cap * den + den - 1) / num
+ (raw_cap * 10 + 10 - 1) / 11
+ }
+}
+
+// The main performance trick in this hashmap is called Robin Hood Hashing.
+// It gains its excellent performance from one essential operation:
+//
+// If an insertion collides with an existing element, and that element's
+// "probe distance" (how far away the element is from its ideal location)
+// is higher than how far we've already probed, swap the elements.
+//
+// This massively lowers variance in probe distance, and allows us to get very
+// high load factors with good performance. The 90% load factor I use is rather
+// conservative.
+//
+// > Why a load factor of approximately 90%?
+//
+// In general, all the distances to initial buckets will converge on the mean.
+// At a load factor of α, the odds of finding the target bucket after k
+// probes is approximately 1-α^k. If we set this equal to 50% (since we converge
+// on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round
+// this down to make the math easier on the CPU and avoid its FPU.
+// Since on average we start the probing in the middle of a cache line, this
+// strategy pulls in two cache lines of hashes on every lookup. I think that's
+// pretty good, but if you want to trade off some space, it could go down to one
+// cache line on average with an α of 0.84.
+//
+// > Wait, what? Where did you get 1-α^k from?
+//
+// On the first probe, your odds of a collision with an existing element is α.
+// The odds of doing this twice in a row is approximately α^2. For three times,
+// α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT
+// colliding after k tries is 1-α^k.
+//
+// The paper from 1986 cited below mentions an implementation which keeps track
+// of the distance-to-initial-bucket histogram. This approach is not suitable
+// for modern architectures because it requires maintaining an internal data
+// structure. This allows very good first guesses, but we are most concerned
+// with guessing entire cache lines, not individual indexes. Furthermore, array
+// accesses are no longer linear and in one direction, as we have now. There
+// is also memory and cache pressure that this would entail that would be very
+// difficult to properly see in a microbenchmark.
+//
+// ## Future Improvements (FIXME!)
+//
+// Allow the load factor to be changed dynamically and/or at initialization.
+//
+// Also, would it be possible for us to reuse storage when growing the
+// underlying table? This is exactly the use case for 'realloc', and may
+// be worth exploring.
+//
+// ## Future Optimizations (FIXME!)
+//
+// Another possible design choice that I made without any real reason is
+// parameterizing the raw table over keys and values. Technically, all we need
+// is the size and alignment of keys and values, and the code should be just as
+// efficient (well, we might need one for power-of-two size and one for not...).
+// This has the potential to reduce code bloat in rust executables, without
+// really losing anything except 4 words (key size, key alignment, val size,
+// val alignment) which can be passed in to every call of a `RawTable` function.
+// This would definitely be an avenue worth exploring if people start complaining
+// about the size of rust executables.
+//
+// Annotate exceedingly likely branches in `table::make_hash`
+// and `search_hashed` to reduce instruction cache pressure
+// and mispredictions once it becomes possible (blocked on issue #11092).
+//
+// Shrinking the table could simply reallocate in place after moving buckets
+// to the first half.
+//
+// The growth algorithm (fragment of the Proof of Correctness)
+// --------------------
+//
+// The growth algorithm is basically a fast path of the naive reinsertion-
+// during-resize algorithm. Other paths should never be taken.
+//
+// Consider growing a robin hood hashtable of capacity n. Normally, we do this
+// by allocating a new table of capacity `2n`, and then individually reinsert
+// each element in the old table into the new one. This guarantees that the
+// new table is a valid robin hood hashtable with all the desired statistical
+// properties. Remark that the order we reinsert the elements in should not
+// matter. For simplicity and efficiency, we will consider only linear
+// reinsertions, which consist of reinserting all elements in the old table
+// into the new one by increasing order of index. However we will not be
+// starting our reinsertions from index 0 in general. If we start from index
+// i, for the purpose of reinsertion we will consider all elements with real
+// index j < i to have virtual index n + j.
+//
+// Our hash generation scheme consists of generating a 64-bit hash and
+// truncating the most significant bits. When moving to the new table, we
+// simply introduce a new bit to the front of the hash. Therefore, if an
+// elements has ideal index i in the old table, it can have one of two ideal
+// locations in the new table. If the new bit is 0, then the new ideal index
+// is i. If the new bit is 1, then the new ideal index is n + i. Intuitively,
+// we are producing two independent tables of size n, and for each element we
+// independently choose which table to insert it into with equal probability.
+// However the rather than wrapping around themselves on overflowing their
+// indexes, the first table overflows into the first, and the first into the
+// second. Visually, our new table will look something like:
+//
+// [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy]
+//
+// Where x's are elements inserted into the first table, y's are elements
+// inserted into the second, and _'s are empty sections. We now define a few
+// key concepts that we will use later. Note that this is a very abstract
+// perspective of the table. A real resized table would be at least half
+// empty.
+//
+// Theorem: A linear robin hood reinsertion from the first ideal element
+// produces identical results to a linear naive reinsertion from the same
+// element.
+//
+// FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md
+//
+// Adaptive early resizing
+// ----------------------
+// To protect against degenerate performance scenarios (including DOS attacks),
+// the implementation includes an adaptive behavior that can resize the map
+// early (before its capacity is exceeded) when suspiciously long probe sequences
+// are encountered.
+//
+// With this algorithm in place it would be possible to turn a CPU attack into
+// a memory attack due to the aggressive resizing. To prevent that the
+// adaptive behavior only triggers when the map is at least half full.
+// This reduces the effectiveness of the algorithm but also makes it completely safe.
+//
+// The previous safety measure also prevents degenerate interactions with
+// really bad quality hash algorithms that can make normal inputs look like a
+// DOS attack.
+//
+const DISPLACEMENT_THRESHOLD: usize = 128;
+//
+// The threshold of 128 is chosen to minimize the chance of exceeding it.
+// In particular, we want that chance to be less than 10^-8 with a load of 90%.
+// For displacement, the smallest constant that fits our needs is 90,
+// so we round that up to 128.
+//
+// At a load factor of α, the odds of finding the target bucket after exactly n
+// unsuccessful probes[1] are
+//
+// Pr_α{displacement = n} =
+// (1 - α) / α * ∑_{k≥1} e^(-kα) * (kα)^(k+n) / (k + n)! * (1 - kα / (k + n + 1))
+//
+// We use this formula to find the probability of triggering the adaptive behavior
+//
+// Pr_0.909{displacement > 128} = 1.601 * 10^-11
+//
+// 1. Alfredo Viola (2005). Distributional analysis of Robin Hood linear probing
+// hashing with buckets.
+
+/// A hash map implemented with linear probing and Robin Hood bucket stealing.
+///
+/// By default, `HashMap` uses a hashing algorithm selected to provide
+/// resistance against HashDoS attacks. The algorithm is randomly seeded, and a
+/// reasonable best-effort is made to generate this seed from a high quality,
+/// secure source of randomness provided by the host without blocking the
+/// program. Because of this, the randomness of the seed depends on the output
+/// quality of the system's random number generator when the seed is created.
+/// In particular, seeds generated when the system's entropy pool is abnormally
+/// low such as during system boot may be of a lower quality.
+///
+/// The default hashing algorithm is currently SipHash 1-3, though this is
+/// subject to change at any point in the future. While its performance is very
+/// competitive for medium sized keys, other hashing algorithms will outperform
+/// it for small keys such as integers as well as large keys such as long
+/// strings, though those algorithms will typically *not* protect against
+/// attacks such as HashDoS.
+///
+/// The hashing algorithm can be replaced on a per-`HashMap` basis using the
+/// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many
+/// alternative algorithms are available on crates.io, such as the [`fnv`] crate.
+///
+/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although
+/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
+/// If you implement these yourself, it is important that the following
+/// property holds:
+///
+/// ```text
+/// k1 == k2 -> hash(k1) == hash(k2)
+/// ```
+///
+/// In other words, if two keys are equal, their hashes must be equal.
+///
+/// It is a logic error for a key to be modified in such a way that the key's
+/// hash, as determined by the [`Hash`] trait, or its equality, as determined by
+/// the [`Eq`] trait, changes while it is in the map. This is normally only
+/// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
+///
+/// Relevant papers/articles:
+///
+/// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf)
+/// 2. Emmanuel Goossaert. ["Robin Hood
+/// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/)
+/// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift
+/// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/)
+///
+/// # Examples
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// // type inference lets us omit an explicit type signature (which
+/// // would be `HashMap<&str, &str>` in this example).
+/// let mut book_reviews = HashMap::new();
+///
+/// // review some books.
+/// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.");
+/// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.");
+/// book_reviews.insert("Pride and Prejudice", "Very enjoyable.");
+/// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.");
+///
+/// // check for a specific one.
+/// if !book_reviews.contains_key("Les Misérables") {
+/// println!("We've got {} reviews, but Les Misérables ain't one.",
+/// book_reviews.len());
+/// }
+///
+/// // oops, this review has a lot of spelling mistakes, let's delete it.
+/// book_reviews.remove("The Adventures of Sherlock Holmes");
+///
+/// // look up the values associated with some keys.
+/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
+/// for book in &to_find {
+/// match book_reviews.get(book) {
+/// Some(review) => println!("{}: {}", book, review),
+/// None => println!("{} is unreviewed.", book)
+/// }
+/// }
+///
+/// // iterate over everything.
+/// for (book, review) in &book_reviews {
+/// println!("{}: \"{}\"", book, review);
+/// }
+/// ```
+///
+/// `HashMap` also implements an [`Entry API`](#method.entry), which allows
+/// for more complex methods of getting, setting, updating and removing keys and
+/// their values:
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// // type inference lets us omit an explicit type signature (which
+/// // would be `HashMap<&str, u8>` in this example).
+/// let mut player_stats = HashMap::new();
+///
+/// fn random_stat_buff() -> u8 {
+/// // could actually return some random value here - let's just return
+/// // some fixed value for now
+/// 42
+/// }
+///
+/// // insert a key only if it doesn't already exist
+/// player_stats.entry("health").or_insert(100);
+///
+/// // insert a key using a function that provides a new value only if it
+/// // doesn't already exist
+/// player_stats.entry("defence").or_insert_with(random_stat_buff);
+///
+/// // update a key, guarding against the key possibly not being set
+/// let stat = player_stats.entry("attack").or_insert(100);
+/// *stat += random_stat_buff();
+/// ```
+///
+/// The easiest way to use `HashMap` with a custom type as key is to derive [`Eq`] and [`Hash`].
+/// We must also derive [`PartialEq`].
+///
+/// [`Eq`]: ../../std/cmp/trait.Eq.html
+/// [`Hash`]: ../../std/hash/trait.Hash.html
+/// [`PartialEq`]: ../../std/cmp/trait.PartialEq.html
+/// [`RefCell`]: ../../std/cell/struct.RefCell.html
+/// [`Cell`]: ../../std/cell/struct.Cell.html
+/// [`default`]: #method.default
+/// [`with_hasher`]: #method.with_hasher
+/// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher
+/// [`fnv`]: https://crates.io/crates/fnv
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// #[derive(Hash, Eq, PartialEq, Debug)]
+/// struct Viking {
+/// name: String,
+/// country: String,
+/// }
+///
+/// impl Viking {
+/// /// Create a new Viking.
+/// fn new(name: &str, country: &str) -> Viking {
+/// Viking { name: name.to_string(), country: country.to_string() }
+/// }
+/// }
+///
+/// // Use a HashMap to store the vikings' health points.
+/// let mut vikings = HashMap::new();
+///
+/// vikings.insert(Viking::new("Einar", "Norway"), 25);
+/// vikings.insert(Viking::new("Olaf", "Denmark"), 24);
+/// vikings.insert(Viking::new("Harald", "Iceland"), 12);
+///
+/// // Use derived implementation to print the status of the vikings.
+/// for (viking, health) in &vikings {
+/// println!("{:?} has {} hp", viking, health);
+/// }
+/// ```
+///
+/// A `HashMap` with fixed list of elements can be initialized from an array:
+///
+/// ```
+/// use std::collections::HashMap;
+///
+/// fn main() {
+/// let timber_resources: HashMap<&str, i32> =
+/// [("Norway", 100),
+/// ("Denmark", 50),
+/// ("Iceland", 10)]
+/// .iter().cloned().collect();
+/// // use the values stored in map
+/// }
+/// ```
+
+#[derive(Clone)]
+pub struct HashMap<K, V, S = RandomState> {
+ // All hashes are keyed on these values, to prevent hash collision attacks.
+ hash_builder: S,
+
+ table: RawTable<K, V>,
+
+ resize_policy: DefaultResizePolicy,
+}
+
+/// Search for a pre-hashed key.
+#[inline]
+fn search_hashed<K, V, M, F>(table: M, hash: SafeHash, mut is_match: F) -> InternalEntry<K, V, M>
+where
+ M: Deref<Target = RawTable<K, V>>,
+ F: FnMut(&K) -> bool,
+{
+ // This is the only function where capacity can be zero. To avoid
+ // undefined behavior when Bucket::new gets the raw bucket in this
+ // case, immediately return the appropriate search result.
+ if table.capacity() == 0 {
+ return InternalEntry::TableIsEmpty;
+ }
+
+ let size = table.size();
+ let mut probe = Bucket::new(table, hash);
+ let mut displacement = 0;
+
+ loop {
+ let full = match probe.peek() {
+ Empty(bucket) => {
+ // Found a hole!
+ return InternalEntry::Vacant {
+ hash,
+ elem: NoElem(bucket, displacement),
+ };
+ },
+ Full(bucket) => bucket,
+ };
+
+ let probe_displacement = full.displacement();
+
+ if probe_displacement < displacement {
+ // Found a luckier bucket than me.
+ // We can finish the search early if we hit any bucket
+ // with a lower distance to initial bucket than we've probed.
+ return InternalEntry::Vacant {
+ hash,
+ elem: NeqElem(full, probe_displacement),
+ };
+ }
+
+ // If the hash doesn't match, it can't be this one..
+ if hash == full.hash() {
+ // If the key doesn't match, it can't be this one..
+ if is_match(full.read().0) {
+ return InternalEntry::Occupied { elem: full };
+ }
+ }
+ displacement += 1;
+ probe = full.next();
+ debug_assert!(displacement <= size);
+ }
+}
+
+fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>) -> (K, V, &mut RawTable<K, V>) {
+ let (empty, retkey, retval) = starting_bucket.take();
+ let mut gap = match empty.gap_peek() {
+ Ok(b) => b,
+ Err(b) => return (retkey, retval, b.into_table()),
+ };
+
+ while gap.full().displacement() != 0 {
+ gap = match gap.shift() {
+ Ok(b) => b,
+ Err(b) => {
+ return (retkey, retval, b.into_table());
+ },
+ };
+ }
+
+ // Now we've done all our shifting. Return the value we grabbed earlier.
+ (retkey, retval, gap.into_table())
+}
+
+/// Perform robin hood bucket stealing at the given `bucket`. You must
+/// also pass that bucket's displacement so we don't have to recalculate it.
+///
+/// `hash`, `key`, and `val` are the elements to "robin hood" into the hashtable.
+fn robin_hood<'a, K: 'a, V: 'a>(
+ bucket: FullBucketMut<'a, K, V>,
+ mut displacement: usize,
+ mut hash: SafeHash,
+ mut key: K,
+ mut val: V,
+) -> FullBucketMut<'a, K, V> {
+ let size = bucket.table().size();
+ let raw_capacity = bucket.table().capacity();
+ // There can be at most `size - dib` buckets to displace, because
+ // in the worst case, there are `size` elements and we already are
+ // `displacement` buckets away from the initial one.
+ let idx_end = (bucket.index() + size - bucket.displacement()) % raw_capacity;
+ // Save the *starting point*.
+ let mut bucket = bucket.stash();
+
+ loop {
+ let (old_hash, old_key, old_val) = bucket.replace(hash, key, val);
+ hash = old_hash;
+ key = old_key;
+ val = old_val;
+
+ loop {
+ displacement += 1;
+ let probe = bucket.next();
+ debug_assert_ne!(probe.index(), idx_end);
+
+ let full_bucket = match probe.peek() {
+ Empty(bucket) => {
+ // Found a hole!
+ let bucket = bucket.put(hash, key, val);
+ // Now that it's stolen, just read the value's pointer
+ // right out of the table! Go back to the *starting point*.
+ //
+ // This use of `into_table` is misleading. It turns the
+ // bucket, which is a FullBucket on top of a
+ // FullBucketMut, into just one FullBucketMut. The "table"
+ // refers to the inner FullBucketMut in this context.
+ return bucket.into_table();
+ },
+ Full(bucket) => bucket,
+ };
+
+ let probe_displacement = full_bucket.displacement();
+
+ bucket = full_bucket;
+
+ // Robin hood! Steal the spot.
+ if probe_displacement < displacement {
+ displacement = probe_displacement;
+ break;
+ }
+ }
+ }
+}
+
+impl<K, V, S> HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash
+ where
+ X: Hash,
+ {
+ table::make_hash(&self.hash_builder, x)
+ }
+
+ /// Search for a key, yielding the index if it's found in the hashtable.
+ /// If you already have the hash for the key lying around, use
+ /// search_hashed.
+ #[inline]
+ fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> InternalEntry<K, V, &'a RawTable<K, V>>
+ where
+ K: Borrow<Q>,
+ Q: Eq + Hash,
+ {
+ let hash = self.make_hash(q);
+ search_hashed(&self.table, hash, |k| q.eq(k.borrow()))
+ }
+
+ #[inline]
+ fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> InternalEntry<K, V, &'a mut RawTable<K, V>>
+ where
+ K: Borrow<Q>,
+ Q: Eq + Hash,
+ {
+ let hash = self.make_hash(q);
+ search_hashed(&mut self.table, hash, |k| q.eq(k.borrow()))
+ }
+
+ // The caller should ensure that invariants by Robin Hood Hashing hold
+ // and that there's space in the underlying table.
+ fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) {
+ let mut buckets = Bucket::new(&mut self.table, hash);
+ let start_index = buckets.index();
+
+ loop {
+ // We don't need to compare hashes for value swap.
+ // Not even DIBs for Robin Hood.
+ buckets = match buckets.peek() {
+ Empty(empty) => {
+ empty.put(hash, k, v);
+ return;
+ },
+ Full(b) => b.into_bucket(),
+ };
+ buckets.next();
+ debug_assert_ne!(buckets.index(), start_index);
+ }
+ }
+}
+
+impl<K, V, S> HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ /// Creates an empty `HashMap` which will use the given hash builder to hash
+ /// keys.
+ ///
+ /// The created map has the default initial capacity.
+ ///
+ /// Warning: `hash_builder` is normally randomly generated, and
+ /// is designed to allow HashMaps to be resistant to attacks that
+ /// cause many collisions and very poor performance. Setting it
+ /// manually using this function can expose a DoS attack vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let s = RandomState::new();
+ /// let mut map = HashMap::with_hasher(s);
+ /// map.insert(1, 2);
+ /// ```
+ #[inline]
+ pub fn try_with_hasher(hash_builder: S) -> Result<HashMap<K, V, S>, FailedAllocationError> {
+ Ok(HashMap {
+ hash_builder,
+ resize_policy: DefaultResizePolicy::new(),
+ table: RawTable::new(0)?,
+ })
+ }
+
+ #[inline]
+ pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S> {
+ Self::try_with_hasher(hash_builder).unwrap()
+ }
+
+ /// Creates an empty `HashMap` with the specified capacity, using `hash_builder`
+ /// to hash the keys.
+ ///
+ /// The hash map will be able to hold at least `capacity` elements without
+ /// reallocating. If `capacity` is 0, the hash map will not allocate.
+ ///
+ /// Warning: `hash_builder` is normally randomly generated, and
+ /// is designed to allow HashMaps to be resistant to attacks that
+ /// cause many collisions and very poor performance. Setting it
+ /// manually using this function can expose a DoS attack vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::RandomState;
+ ///
+ /// let s = RandomState::new();
+ /// let mut map = HashMap::with_capacity_and_hasher(10, s);
+ /// map.insert(1, 2);
+ /// ```
+ #[inline]
+ pub fn try_with_capacity_and_hasher(
+ capacity: usize,
+ hash_builder: S,
+ ) -> Result<HashMap<K, V, S>, FailedAllocationError> {
+ let resize_policy = DefaultResizePolicy::new();
+ let raw_cap = resize_policy.raw_capacity(capacity);
+ Ok(HashMap {
+ hash_builder,
+ resize_policy,
+ table: RawTable::new(raw_cap)?,
+ })
+ }
+
+ pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap<K, V, S> {
+ Self::try_with_capacity_and_hasher(capacity, hash_builder).unwrap()
+ }
+
+ /// Returns a reference to the map's [`BuildHasher`].
+ ///
+ /// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html
+ pub fn hasher(&self) -> &S {
+ &self.hash_builder
+ }
+
+ /// Returns the number of elements the map can hold without reallocating.
+ ///
+ /// This number is a lower bound; the `HashMap<K, V>` might be able to hold
+ /// more, but is guaranteed to be able to hold at least this many.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// let map: HashMap<isize, isize> = HashMap::with_capacity(100);
+ /// assert!(map.capacity() >= 100);
+ /// ```
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.resize_policy.capacity(self.raw_capacity())
+ }
+
+ /// Returns the hash map's raw capacity.
+ #[inline]
+ fn raw_capacity(&self) -> usize {
+ self.table.capacity()
+ }
+
+ /// Reserves capacity for at least `additional` more elements to be inserted
+ /// in the `HashMap`. The collection may reserve more space to avoid
+ /// frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new allocation size overflows [`usize`].
+ ///
+ /// [`usize`]: ../../std/primitive.usize.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// let mut map: HashMap<&str, isize> = HashMap::new();
+ /// map.reserve(10);
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ self.try_reserve(additional).unwrap();
+ }
+
+ #[inline]
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), FailedAllocationError> {
+ let remaining = self.capacity() - self.len(); // this can't overflow
+ if remaining < additional {
+ let min_cap = self
+ .len()
+ .checked_add(additional)
+ .expect("reserve overflow");
+ let raw_cap = self.resize_policy.raw_capacity(min_cap);
+ self.try_resize(raw_cap)?;
+ } else if self.table.tag() && remaining <= self.len() {
+ // Probe sequence is too long and table is half full,
+ // resize early to reduce probing length.
+ let new_capacity = self.table.capacity() * 2;
+ self.try_resize(new_capacity)?;
+ }
+ Ok(())
+ }
+
+ #[cold]
+ #[inline(never)]
+ fn try_resize(&mut self, new_raw_cap: usize) -> Result<(), FailedAllocationError> {
+ assert!(self.table.size() <= new_raw_cap);
+ assert!(new_raw_cap.is_power_of_two() || new_raw_cap == 0);
+
+ let mut old_table = replace(&mut self.table, RawTable::new(new_raw_cap)?);
+ let old_size = old_table.size();
+
+ if old_table.size() == 0 {
+ return Ok(());
+ }
+
+ let mut bucket = Bucket::head_bucket(&mut old_table);
+
+ // This is how the buckets might be laid out in memory:
+ // ($ marks an initialized bucket)
+ // ________________
+ // |$$$_$$$$$$_$$$$$|
+ //
+ // But we've skipped the entire initial cluster of buckets
+ // and will continue iteration in this order:
+ // ________________
+ // |$$$$$$_$$$$$
+ // ^ wrap around once end is reached
+ // ________________
+ // $$$_____________|
+ // ^ exit once table.size == 0
+ loop {
+ bucket = match bucket.peek() {
+ Full(bucket) => {
+ let h = bucket.hash();
+ let (b, k, v) = bucket.take();
+ self.insert_hashed_ordered(h, k, v);
+ if b.table().size() == 0 {
+ break;
+ }
+ b.into_bucket()
+ },
+ Empty(b) => b.into_bucket(),
+ };
+ bucket.next();
+ }
+
+ assert_eq!(self.table.size(), old_size);
+ Ok(())
+ }
+
+ /// Shrinks the capacity of the map as much as possible. It will drop
+ /// down as much as possible while maintaining the internal rules
+ /// and possibly leaving some space in accordance with the resize policy.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<isize, isize> = HashMap::with_capacity(100);
+ /// map.insert(1, 2);
+ /// map.insert(3, 4);
+ /// assert!(map.capacity() >= 100);
+ /// map.shrink_to_fit();
+ /// assert!(map.capacity() >= 2);
+ /// ```
+ pub fn shrink_to_fit(&mut self) {
+ self.try_shrink_to_fit().unwrap();
+ }
+
+ pub fn try_shrink_to_fit(&mut self) -> Result<(), FailedAllocationError> {
+ let new_raw_cap = self.resize_policy.raw_capacity(self.len());
+ if self.raw_capacity() != new_raw_cap {
+ let old_table = replace(&mut self.table, RawTable::new(new_raw_cap)?);
+ let old_size = old_table.size();
+
+ // Shrink the table. Naive algorithm for resizing:
+ for (h, k, v) in old_table.into_iter() {
+ self.insert_hashed_nocheck(h, k, v);
+ }
+
+ debug_assert_eq!(self.table.size(), old_size);
+ }
+ Ok(())
+ }
+
+ /// Insert a pre-hashed key-value pair, without first checking
+ /// that there's enough room in the buckets. Returns a reference to the
+ /// newly insert value.
+ ///
+ /// If the key already exists, the hashtable will be returned untouched
+ /// and a reference to the existing element will be returned.
+ fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> Option<V> {
+ let entry = search_hashed(&mut self.table, hash, |key| *key == k).into_entry(k);
+ match entry {
+ Some(Occupied(mut elem)) => Some(elem.insert(v)),
+ Some(Vacant(elem)) => {
+ elem.insert(v);
+ None
+ },
+ None => unreachable!(),
+ }
+ }
+
+ /// An iterator visiting all keys in arbitrary order.
+ /// The iterator element type is `&'a K`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for key in map.keys() {
+ /// println!("{}", key);
+ /// }
+ /// ```
+ pub fn keys(&self) -> Keys<K, V> {
+ Keys { inner: self.iter() }
+ }
+
+ /// An iterator visiting all values in arbitrary order.
+ /// The iterator element type is `&'a V`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for val in map.values() {
+ /// println!("{}", val);
+ /// }
+ /// ```
+ pub fn values(&self) -> Values<K, V> {
+ Values { inner: self.iter() }
+ }
+
+ /// An iterator visiting all values mutably in arbitrary order.
+ /// The iterator element type is `&'a mut V`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ ///
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for val in map.values_mut() {
+ /// *val = *val + 10;
+ /// }
+ ///
+ /// for val in map.values() {
+ /// println!("{}", val);
+ /// }
+ /// ```
+ pub fn values_mut(&mut self) -> ValuesMut<K, V> {
+ ValuesMut {
+ inner: self.iter_mut(),
+ }
+ }
+
+ /// An iterator visiting all key-value pairs in arbitrary order.
+ /// The iterator element type is `(&'a K, &'a V)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// for (key, val) in map.iter() {
+ /// println!("key: {} val: {}", key, val);
+ /// }
+ /// ```
+ pub fn iter(&self) -> Iter<K, V> {
+ Iter {
+ inner: self.table.iter(),
+ }
+ }
+
+ /// An iterator visiting all key-value pairs in arbitrary order,
+ /// with mutable references to the values.
+ /// The iterator element type is `(&'a K, &'a mut V)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// // Update all values
+ /// for (_, val) in map.iter_mut() {
+ /// *val *= 2;
+ /// }
+ ///
+ /// for (key, val) in &map {
+ /// println!("key: {} val: {}", key, val);
+ /// }
+ /// ```
+ pub fn iter_mut(&mut self) -> IterMut<K, V> {
+ IterMut {
+ inner: self.table.iter_mut(),
+ }
+ }
+
+ /// Gets the given key's corresponding entry in the map for in-place manipulation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut letters = HashMap::new();
+ ///
+ /// for ch in "a short treatise on fungi".chars() {
+ /// let counter = letters.entry(ch).or_insert(0);
+ /// *counter += 1;
+ /// }
+ ///
+ /// assert_eq!(letters[&'s'], 2);
+ /// assert_eq!(letters[&'t'], 3);
+ /// assert_eq!(letters[&'u'], 1);
+ /// assert_eq!(letters.get(&'y'), None);
+ /// ```
+ pub fn entry(&mut self, key: K) -> Entry<K, V> {
+ self.try_entry(key).unwrap()
+ }
+
+ #[inline(always)]
+ pub fn try_entry(&mut self, key: K) -> Result<Entry<K, V>, FailedAllocationError> {
+ // Gotta resize now.
+ self.try_reserve(1)?;
+ let hash = self.make_hash(&key);
+ Ok(search_hashed(&mut self.table, hash, |q| q.eq(&key))
+ .into_entry(key)
+ .expect("unreachable"))
+ }
+
+ /// Returns the number of elements in the map.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// assert_eq!(a.len(), 0);
+ /// a.insert(1, "a");
+ /// assert_eq!(a.len(), 1);
+ /// ```
+ pub fn len(&self) -> usize {
+ self.table.size()
+ }
+
+ /// Returns true if the map contains no elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// assert!(a.is_empty());
+ /// a.insert(1, "a");
+ /// assert!(!a.is_empty());
+ /// ```
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Clears the map, returning all key-value pairs as an iterator. Keeps the
+ /// allocated memory for reuse.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// a.insert(1, "a");
+ /// a.insert(2, "b");
+ ///
+ /// for (k, v) in a.drain().take(1) {
+ /// assert!(k == 1 || k == 2);
+ /// assert!(v == "a" || v == "b");
+ /// }
+ ///
+ /// assert!(a.is_empty());
+ /// ```
+ #[inline]
+ pub fn drain(&mut self) -> Drain<K, V>
+ where
+ K: 'static,
+ V: 'static,
+ {
+ Drain {
+ inner: self.table.drain(),
+ }
+ }
+
+ /// Clears the map, removing all key-value pairs. Keeps the allocated memory
+ /// for reuse.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut a = HashMap::new();
+ /// a.insert(1, "a");
+ /// a.clear();
+ /// assert!(a.is_empty());
+ /// ```
+ #[inline]
+ pub fn clear(&mut self)
+ where
+ K: 'static,
+ V: 'static,
+ {
+ self.drain();
+ }
+
+ /// Returns a reference to the value corresponding to the key.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// assert_eq!(map.get(&1), Some(&"a"));
+ /// assert_eq!(map.get(&2), None);
+ /// ```
+ pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.search(k)
+ .into_occupied_bucket()
+ .map(|bucket| bucket.into_refs().1)
+ }
+
+ /// Returns true if the map contains a value for the specified key.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// assert_eq!(map.contains_key(&1), true);
+ /// assert_eq!(map.contains_key(&2), false);
+ /// ```
+ pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.search(k).into_occupied_bucket().is_some()
+ }
+
+ /// Returns a mutable reference to the value corresponding to the key.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// if let Some(x) = map.get_mut(&1) {
+ /// *x = "b";
+ /// }
+ /// assert_eq!(map[&1], "b");
+ /// ```
+ pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ self.search_mut(k)
+ .into_occupied_bucket()
+ .map(|bucket| bucket.into_mut_refs().1)
+ }
+
+ /// Inserts a key-value pair into the map.
+ ///
+ /// If the map did not have this key present, [`None`] is returned.
+ ///
+ /// If the map did have this key present, the value is updated, and the old
+ /// value is returned. The key is not updated, though; this matters for
+ /// types that can be `==` without being identical. See the [module-level
+ /// documentation] for more.
+ ///
+ /// [`None`]: ../../std/option/enum.Option.html#variant.None
+ /// [module-level documentation]: index.html#insert-and-complex-keys
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// assert_eq!(map.insert(37, "a"), None);
+ /// assert_eq!(map.is_empty(), false);
+ ///
+ /// map.insert(37, "b");
+ /// assert_eq!(map.insert(37, "c"), Some("b"));
+ /// assert_eq!(map[&37], "c");
+ /// ```
+ pub fn insert(&mut self, k: K, v: V) -> Option<V> {
+ self.try_insert(k, v).unwrap()
+ }
+
+ #[inline]
+ pub fn try_insert(&mut self, k: K, v: V) -> Result<Option<V>, FailedAllocationError> {
+ let hash = self.make_hash(&k);
+ self.try_reserve(1)?;
+ Ok(self.insert_hashed_nocheck(hash, k, v))
+ }
+
+ /// Removes a key from the map, returning the value at the key if the key
+ /// was previously in the map.
+ ///
+ /// The key may be any borrowed form of the map's key type, but
+ /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
+ /// the key type.
+ ///
+ /// [`Eq`]: ../../std/cmp/trait.Eq.html
+ /// [`Hash`]: ../../std/hash/trait.Hash.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert(1, "a");
+ /// assert_eq!(map.remove(&1), Some("a"));
+ /// assert_eq!(map.remove(&1), None);
+ /// ```
+ pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
+ where
+ K: Borrow<Q>,
+ Q: Hash + Eq,
+ {
+ if self.table.size() == 0 {
+ return None;
+ }
+
+ self.search_mut(k)
+ .into_occupied_bucket()
+ .map(|bucket| pop_internal(bucket).1)
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<isize, isize> = (0..8).map(|x|(x, x*10)).collect();
+ /// map.retain(|&k, _| k % 2 == 0);
+ /// assert_eq!(map.len(), 4);
+ /// ```
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&K, &mut V) -> bool,
+ {
+ if self.table.size() == 0 {
+ return;
+ }
+ let mut elems_left = self.table.size();
+ let mut bucket = Bucket::head_bucket(&mut self.table);
+ bucket.prev();
+ let start_index = bucket.index();
+ while elems_left != 0 {
+ bucket = match bucket.peek() {
+ Full(mut full) => {
+ elems_left -= 1;
+ let should_remove = {
+ let (k, v) = full.read_mut();
+ !f(k, v)
+ };
+ if should_remove {
+ let prev_raw = full.raw();
+ let (_, _, t) = pop_internal(full);
+ Bucket::new_from(prev_raw, t)
+ } else {
+ full.into_bucket()
+ }
+ },
+ Empty(b) => b.into_bucket(),
+ };
+ bucket.prev(); // reverse iteration
+ debug_assert!(elems_left == 0 || bucket.index() != start_index);
+ }
+ }
+}
+
+impl<K, V, S> PartialEq for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ V: PartialEq,
+ S: BuildHasher,
+{
+ fn eq(&self, other: &HashMap<K, V, S>) -> bool {
+ if self.len() != other.len() {
+ return false;
+ }
+
+ self.iter()
+ .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
+ }
+}
+
+impl<K, V, S> Eq for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ V: Eq,
+ S: BuildHasher,
+{
+}
+
+impl<K, V, S> Debug for HashMap<K, V, S>
+where
+ K: Eq + Hash + Debug,
+ V: Debug,
+ S: BuildHasher,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_map().entries(self.iter()).finish()
+ }
+}
+
+impl<K, V, S> Default for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher + Default,
+{
+ /// Creates an empty `HashMap<K, V, S>`, with the `Default` value for the hasher.
+ fn default() -> HashMap<K, V, S> {
+ HashMap::with_hasher(Default::default())
+ }
+}
+
+impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S>
+where
+ K: Eq + Hash + Borrow<Q>,
+ Q: Eq + Hash,
+ S: BuildHasher,
+{
+ type Output = V;
+
+ #[inline]
+ fn index(&self, index: &Q) -> &V {
+ self.get(index).expect("no entry found for key")
+ }
+}
+
+/// An iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`iter`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`iter`]: struct.HashMap.html#method.iter
+/// [`HashMap`]: struct.HashMap.html
+pub struct Iter<'a, K: 'a, V: 'a> {
+ inner: table::Iter<'a, K, V>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Iter<'a, K, V> {
+ fn clone(&self) -> Iter<'a, K, V> {
+ Iter {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<'a, K: Debug, V: Debug> fmt::Debug for Iter<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+/// A mutable iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`iter_mut`]: struct.HashMap.html#method.iter_mut
+/// [`HashMap`]: struct.HashMap.html
+pub struct IterMut<'a, K: 'a, V: 'a> {
+ inner: table::IterMut<'a, K, V>,
+}
+
+/// An owning iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`into_iter`] method on [`HashMap`][`HashMap`]
+/// (provided by the `IntoIterator` trait). See its documentation for more.
+///
+/// [`into_iter`]: struct.HashMap.html#method.into_iter
+/// [`HashMap`]: struct.HashMap.html
+pub struct IntoIter<K, V> {
+ pub(super) inner: table::IntoIter<K, V>,
+}
+
+/// An iterator over the keys of a `HashMap`.
+///
+/// This `struct` is created by the [`keys`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`keys`]: struct.HashMap.html#method.keys
+/// [`HashMap`]: struct.HashMap.html
+pub struct Keys<'a, K: 'a, V: 'a> {
+ inner: Iter<'a, K, V>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Keys<'a, K, V> {
+ fn clone(&self) -> Keys<'a, K, V> {
+ Keys {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<'a, K: Debug, V> fmt::Debug for Keys<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+/// An iterator over the values of a `HashMap`.
+///
+/// This `struct` is created by the [`values`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`values`]: struct.HashMap.html#method.values
+/// [`HashMap`]: struct.HashMap.html
+pub struct Values<'a, K: 'a, V: 'a> {
+ inner: Iter<'a, K, V>,
+}
+
+// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
+impl<'a, K, V> Clone for Values<'a, K, V> {
+ fn clone(&self) -> Values<'a, K, V> {
+ Values {
+ inner: self.inner.clone(),
+ }
+ }
+}
+
+impl<'a, K, V: Debug> fmt::Debug for Values<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.clone()).finish()
+ }
+}
+
+/// A draining iterator over the entries of a `HashMap`.
+///
+/// This `struct` is created by the [`drain`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`drain`]: struct.HashMap.html#method.drain
+/// [`HashMap`]: struct.HashMap.html
+pub struct Drain<'a, K: 'static, V: 'static> {
+ pub(super) inner: table::Drain<'a, K, V>,
+}
+
+/// A mutable iterator over the values of a `HashMap`.
+///
+/// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its
+/// documentation for more.
+///
+/// [`values_mut`]: struct.HashMap.html#method.values_mut
+/// [`HashMap`]: struct.HashMap.html
+pub struct ValuesMut<'a, K: 'a, V: 'a> {
+ inner: IterMut<'a, K, V>,
+}
+
+enum InternalEntry<K, V, M> {
+ Occupied {
+ elem: FullBucket<K, V, M>,
+ },
+ Vacant {
+ hash: SafeHash,
+ elem: VacantEntryState<K, V, M>,
+ },
+ TableIsEmpty,
+}
+
+impl<K, V, M> InternalEntry<K, V, M> {
+ #[inline]
+ fn into_occupied_bucket(self) -> Option<FullBucket<K, V, M>> {
+ match self {
+ InternalEntry::Occupied { elem } => Some(elem),
+ _ => None,
+ }
+ }
+}
+
+impl<'a, K, V> InternalEntry<K, V, &'a mut RawTable<K, V>> {
+ #[inline]
+ fn into_entry(self, key: K) -> Option<Entry<'a, K, V>> {
+ match self {
+ InternalEntry::Occupied { elem } => Some(Occupied(OccupiedEntry {
+ key: Some(key),
+ elem,
+ })),
+ InternalEntry::Vacant { hash, elem } => Some(Vacant(VacantEntry { hash, key, elem })),
+ InternalEntry::TableIsEmpty => None,
+ }
+ }
+}
+
+/// A view into a single entry in a map, which may either be vacant or occupied.
+///
+/// This `enum` is constructed from the [`entry`] method on [`HashMap`].
+///
+/// [`HashMap`]: struct.HashMap.html
+/// [`entry`]: struct.HashMap.html#method.entry
+pub enum Entry<'a, K: 'a, V: 'a> {
+ /// An occupied entry.
+ Occupied(OccupiedEntry<'a, K, V>),
+
+ /// A vacant entry.
+ Vacant(VacantEntry<'a, K, V>),
+}
+
+impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for Entry<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match *self {
+ Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(),
+ Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(),
+ }
+ }
+}
+
+/// A view into an occupied entry in a `HashMap`.
+/// It is part of the [`Entry`] enum.
+///
+/// [`Entry`]: enum.Entry.html
+pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
+ key: Option<K>,
+ elem: FullBucket<K, V, &'a mut RawTable<K, V>>,
+}
+
+impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("OccupiedEntry")
+ .field("key", self.key())
+ .field("value", self.get())
+ .finish()
+ }
+}
+
+/// A view into a vacant entry in a `HashMap`.
+/// It is part of the [`Entry`] enum.
+///
+/// [`Entry`]: enum.Entry.html
+pub struct VacantEntry<'a, K: 'a, V: 'a> {
+ hash: SafeHash,
+ key: K,
+ elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>,
+}
+
+impl<'a, K: 'a + Debug, V: 'a> Debug for VacantEntry<'a, K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_tuple("VacantEntry").field(self.key()).finish()
+ }
+}
+
+/// Possible states of a VacantEntry.
+enum VacantEntryState<K, V, M> {
+ /// The index is occupied, but the key to insert has precedence,
+ /// and will kick the current one out on insertion.
+ NeqElem(FullBucket<K, V, M>, usize),
+ /// The index is genuinely vacant.
+ NoElem(EmptyBucket<K, V, M>, usize),
+}
+
+impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (&'a K, &'a V);
+ type IntoIter = Iter<'a, K, V>;
+
+ fn into_iter(self) -> Iter<'a, K, V> {
+ self.iter()
+ }
+}
+
+impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (&'a K, &'a mut V);
+ type IntoIter = IterMut<'a, K, V>;
+
+ fn into_iter(self) -> IterMut<'a, K, V> {
+ self.iter_mut()
+ }
+}
+
+impl<K, V, S> IntoIterator for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ type Item = (K, V);
+ type IntoIter = IntoIter<K, V>;
+
+ /// Creates a consuming iterator, that is, one that moves each key-value
+ /// pair out of the map in arbitrary order. The map cannot be used after
+ /// calling this.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map = HashMap::new();
+ /// map.insert("a", 1);
+ /// map.insert("b", 2);
+ /// map.insert("c", 3);
+ ///
+ /// // Not possible with .iter()
+ /// let vec: Vec<(&str, isize)> = map.into_iter().collect();
+ /// ```
+ fn into_iter(self) -> IntoIter<K, V> {
+ IntoIter {
+ inner: self.table.into_iter(),
+ }
+ }
+}
+
+impl<'a, K, V> Iterator for Iter<'a, K, V> {
+ type Item = (&'a K, &'a V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(&'a K, &'a V)> {
+ self.inner.next()
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> Iterator for IterMut<'a, K, V> {
+ type Item = (&'a K, &'a mut V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
+ self.inner.next()
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> fmt::Debug for IterMut<'a, K, V>
+where
+ K: fmt::Debug,
+ V: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.iter()).finish()
+ }
+}
+
+impl<K, V> Iterator for IntoIter<K, V> {
+ type Item = (K, V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(K, V)> {
+ self.inner.next().map(|(_, k, v)| (k, v))
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<K, V> ExactSizeIterator for IntoIter<K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<K: Debug, V: Debug> fmt::Debug for IntoIter<K, V> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.iter()).finish()
+ }
+}
+
+impl<'a, K, V> Iterator for Keys<'a, K, V> {
+ type Item = &'a K;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a K> {
+ self.inner.next().map(|(k, _)| k)
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> Iterator for Values<'a, K, V> {
+ type Item = &'a V;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a V> {
+ self.inner.next().map(|(_, v)| v)
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
+ type Item = &'a mut V;
+
+ #[inline]
+ fn next(&mut self) -> Option<&'a mut V> {
+ self.inner.next().map(|(_, v)| v)
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> fmt::Debug for ValuesMut<'a, K, V>
+where
+ K: fmt::Debug,
+ V: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.inner.iter()).finish()
+ }
+}
+
+impl<'a, K, V> Iterator for Drain<'a, K, V> {
+ type Item = (K, V);
+
+ #[inline]
+ fn next(&mut self) -> Option<(K, V)> {
+ self.inner.next().map(|(_, k, v)| (k, v))
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
+ #[inline]
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+}
+
+impl<'a, K, V> fmt::Debug for Drain<'a, K, V>
+where
+ K: fmt::Debug,
+ V: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list().entries(self.inner.iter()).finish()
+ }
+}
+
+// FORK NOTE: Removed Placer impl
+
+impl<'a, K, V> Entry<'a, K, V> {
+ /// Ensures a value is in the entry by inserting the default if empty, and returns
+ /// a mutable reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// assert_eq!(map["poneyland"], 12);
+ ///
+ /// *map.entry("poneyland").or_insert(12) += 10;
+ /// assert_eq!(map["poneyland"], 22);
+ /// ```
+ pub fn or_insert(self, default: V) -> &'a mut V {
+ match self {
+ Occupied(entry) => entry.into_mut(),
+ Vacant(entry) => entry.insert(default),
+ }
+ }
+
+ /// Ensures a value is in the entry by inserting the result of the default function if empty,
+ /// and returns a mutable reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, String> = HashMap::new();
+ /// let s = "hoho".to_string();
+ ///
+ /// map.entry("poneyland").or_insert_with(|| s);
+ ///
+ /// assert_eq!(map["poneyland"], "hoho".to_string());
+ /// ```
+ pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
+ match self {
+ Occupied(entry) => entry.into_mut(),
+ Vacant(entry) => entry.insert(default()),
+ }
+ }
+
+ /// Returns a reference to this entry's key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// assert_eq!(map.entry("poneyland").key(), &"poneyland");
+ /// ```
+ pub fn key(&self) -> &K {
+ match *self {
+ Occupied(ref entry) => entry.key(),
+ Vacant(ref entry) => entry.key(),
+ }
+ }
+}
+
+impl<'a, K, V> OccupiedEntry<'a, K, V> {
+ /// Gets a reference to the key in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ /// assert_eq!(map.entry("poneyland").key(), &"poneyland");
+ /// ```
+ pub fn key(&self) -> &K {
+ self.elem.read().0
+ }
+
+ /// Take the ownership of the key and value from the map.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// // We delete the entry from the map.
+ /// o.remove_entry();
+ /// }
+ ///
+ /// assert_eq!(map.contains_key("poneyland"), false);
+ /// ```
+ pub fn remove_entry(self) -> (K, V) {
+ let (k, v, _) = pop_internal(self.elem);
+ (k, v)
+ }
+
+ /// Gets a reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// assert_eq!(o.get(), &12);
+ /// }
+ /// ```
+ pub fn get(&self) -> &V {
+ self.elem.read().1
+ }
+
+ /// Gets a mutable reference to the value in the entry.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// assert_eq!(map["poneyland"], 12);
+ /// if let Entry::Occupied(mut o) = map.entry("poneyland") {
+ /// *o.get_mut() += 10;
+ /// }
+ ///
+ /// assert_eq!(map["poneyland"], 22);
+ /// ```
+ pub fn get_mut(&mut self) -> &mut V {
+ self.elem.read_mut().1
+ }
+
+ /// Converts the OccupiedEntry into a mutable reference to the value in the entry
+ /// with a lifetime bound to the map itself.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// assert_eq!(map["poneyland"], 12);
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// *o.into_mut() += 10;
+ /// }
+ ///
+ /// assert_eq!(map["poneyland"], 22);
+ /// ```
+ pub fn into_mut(self) -> &'a mut V {
+ self.elem.into_mut_refs().1
+ }
+
+ /// Sets the value of the entry, and returns the entry's old value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(mut o) = map.entry("poneyland") {
+ /// assert_eq!(o.insert(15), 12);
+ /// }
+ ///
+ /// assert_eq!(map["poneyland"], 15);
+ /// ```
+ pub fn insert(&mut self, mut value: V) -> V {
+ let old_value = self.get_mut();
+ mem::swap(&mut value, old_value);
+ value
+ }
+
+ /// Takes the value out of the entry, and returns it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// map.entry("poneyland").or_insert(12);
+ ///
+ /// if let Entry::Occupied(o) = map.entry("poneyland") {
+ /// assert_eq!(o.remove(), 12);
+ /// }
+ ///
+ /// assert_eq!(map.contains_key("poneyland"), false);
+ /// ```
+ pub fn remove(self) -> V {
+ pop_internal(self.elem).1
+ }
+
+ /// Returns a key that was used for search.
+ ///
+ /// The key was retained for further use.
+ fn take_key(&mut self) -> Option<K> {
+ self.key.take()
+ }
+}
+
+impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> {
+ /// Gets a reference to the key that would be used when inserting a value
+ /// through the `VacantEntry`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ /// assert_eq!(map.entry("poneyland").key(), &"poneyland");
+ /// ```
+ pub fn key(&self) -> &K {
+ &self.key
+ }
+
+ /// Take ownership of the key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ ///
+ /// if let Entry::Vacant(v) = map.entry("poneyland") {
+ /// v.into_key();
+ /// }
+ /// ```
+ pub fn into_key(self) -> K {
+ self.key
+ }
+
+ /// Sets the value of the entry with the VacantEntry's key,
+ /// and returns a mutable reference to it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::collections::HashMap;
+ /// use std::collections::hash_map::Entry;
+ ///
+ /// let mut map: HashMap<&str, u32> = HashMap::new();
+ ///
+ /// if let Entry::Vacant(o) = map.entry("poneyland") {
+ /// o.insert(37);
+ /// }
+ /// assert_eq!(map["poneyland"], 37);
+ /// ```
+ pub fn insert(self, value: V) -> &'a mut V {
+ let b = match self.elem {
+ NeqElem(mut bucket, disp) => {
+ if disp >= DISPLACEMENT_THRESHOLD {
+ bucket.table_mut().set_tag(true);
+ }
+ robin_hood(bucket, disp, self.hash, self.key, value)
+ },
+ NoElem(mut bucket, disp) => {
+ if disp >= DISPLACEMENT_THRESHOLD {
+ bucket.table_mut().set_tag(true);
+ }
+ bucket.put(self.hash, self.key, value)
+ },
+ };
+ b.into_mut_refs().1
+ }
+}
+
+impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher + Default,
+{
+ fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> HashMap<K, V, S> {
+ let mut map = HashMap::with_hasher(Default::default());
+ map.extend(iter);
+ map
+ }
+}
+
+impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
+where
+ K: Eq + Hash,
+ S: BuildHasher,
+{
+ fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
+ // Keys may be already present or show multiple times in the iterator.
+ // Reserve the entire hint lower bound if the map is empty.
+ // Otherwise reserve half the hint (rounded up), so the map
+ // will only resize twice in the worst case.
+ let iter = iter.into_iter();
+ let reserve = if self.is_empty() {
+ iter.size_hint().0
+ } else {
+ (iter.size_hint().0 + 1) / 2
+ };
+ self.reserve(reserve);
+ for (k, v) in iter {
+ self.insert(k, v);
+ }
+ }
+}
+
+impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S>
+where
+ K: Eq + Hash + Copy,
+ V: Copy,
+ S: BuildHasher,
+{
+ fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) {
+ self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
+ }
+}
+
+// FORK NOTE: These can be reused
+pub use std::collections::hash_map::{DefaultHasher, RandomState};
+
+impl<K, S, Q: ?Sized> super::Recover<Q> for HashMap<K, (), S>
+where
+ K: Eq + Hash + Borrow<Q>,
+ S: BuildHasher,
+ Q: Eq + Hash,
+{
+ type Key = K;
+
+ fn get(&self, key: &Q) -> Option<&K> {
+ self.search(key)
+ .into_occupied_bucket()
+ .map(|bucket| bucket.into_refs().0)
+ }
+
+ fn take(&mut self, key: &Q) -> Option<K> {
+ if self.table.size() == 0 {
+ return None;
+ }
+
+ self.search_mut(key)
+ .into_occupied_bucket()
+ .map(|bucket| pop_internal(bucket).0)
+ }
+
+ fn replace(&mut self, key: K) -> Option<K> {
+ self.reserve(1);
+
+ match self.entry(key) {
+ Occupied(mut occupied) => {
+ let key = occupied.take_key().unwrap();
+ Some(mem::replace(occupied.elem.read_mut().0, key))
+ },
+ Vacant(vacant) => {
+ vacant.insert(());
+ None
+ },
+ }
+ }
+}
+
+#[allow(dead_code)]
+fn assert_covariance() {
+ fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> {
+ v
+ }
+ fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> {
+ v
+ }
+ fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> {
+ v
+ }
+ fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> {
+ v
+ }
+ fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> {
+ v
+ }
+ fn into_iter_val<'new>(v: IntoIter<u8, &'static str>) -> IntoIter<u8, &'new str> {
+ v
+ }
+ fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> {
+ v
+ }
+ fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> {
+ v
+ }
+ fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> {
+ v
+ }
+ fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> {
+ v
+ }
+ fn drain<'new>(
+ d: Drain<'static, &'static str, &'static str>,
+ ) -> Drain<'new, &'new str, &'new str> {
+ d
+ }
+}
+
+#[cfg(test)]
+mod test_map {
+ extern crate rand;
+ use self::rand::{thread_rng, Rng};
+ use super::Entry::{Occupied, Vacant};
+ use super::HashMap;
+ use super::RandomState;
+ use cell::RefCell;
+
+ #[test]
+ fn test_zero_capacities() {
+ type HM = HashMap<i32, i32>;
+
+ let m = HM::new();
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::default();
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::with_hasher(RandomState::new());
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::with_capacity(0);
+ assert_eq!(m.capacity(), 0);
+
+ let m = HM::with_capacity_and_hasher(0, RandomState::new());
+ assert_eq!(m.capacity(), 0);
+
+ let mut m = HM::new();
+ m.insert(1, 1);
+ m.insert(2, 2);
+ m.remove(&1);
+ m.remove(&2);
+ m.shrink_to_fit();
+ assert_eq!(m.capacity(), 0);
+
+ let mut m = HM::new();
+ m.reserve(0);
+ assert_eq!(m.capacity(), 0);
+ }
+
+ #[test]
+ fn test_create_capacity_zero() {
+ let mut m = HashMap::with_capacity(0);
+
+ assert!(m.insert(1, 1).is_none());
+
+ assert!(m.contains_key(&1));
+ assert!(!m.contains_key(&0));
+ }
+
+ #[test]
+ fn test_insert() {
+ let mut m = HashMap::new();
+ assert_eq!(m.len(), 0);
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(m.len(), 1);
+ assert!(m.insert(2, 4).is_none());
+ assert_eq!(m.len(), 2);
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert_eq!(*m.get(&2).unwrap(), 4);
+ }
+
+ #[test]
+ fn test_clone() {
+ let mut m = HashMap::new();
+ assert_eq!(m.len(), 0);
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(m.len(), 1);
+ assert!(m.insert(2, 4).is_none());
+ assert_eq!(m.len(), 2);
+ let m2 = m.clone();
+ assert_eq!(*m2.get(&1).unwrap(), 2);
+ assert_eq!(*m2.get(&2).unwrap(), 4);
+ assert_eq!(m2.len(), 2);
+ }
+
+ thread_local! { static DROP_VECTOR: RefCell<Vec<isize>> = RefCell::new(Vec::new()) }
+
+ #[derive(Hash, PartialEq, Eq)]
+ struct Dropable {
+ k: usize,
+ }
+
+ impl Dropable {
+ fn new(k: usize) -> Dropable {
+ DROP_VECTOR.with(|slot| {
+ slot.borrow_mut()[k] += 1;
+ });
+
+ Dropable { k: k }
+ }
+ }
+
+ impl Drop for Dropable {
+ fn drop(&mut self) {
+ DROP_VECTOR.with(|slot| {
+ slot.borrow_mut()[self.k] -= 1;
+ });
+ }
+ }
+
+ impl Clone for Dropable {
+ fn clone(&self) -> Dropable {
+ Dropable::new(self.k)
+ }
+ }
+
+ #[test]
+ fn test_drops() {
+ DROP_VECTOR.with(|slot| {
+ *slot.borrow_mut() = vec![0; 200];
+ });
+
+ {
+ let mut m = HashMap::new();
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+
+ for i in 0..100 {
+ let d1 = Dropable::new(i);
+ let d2 = Dropable::new(i + 100);
+ m.insert(d1, d2);
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 1);
+ }
+ });
+
+ for i in 0..50 {
+ let k = Dropable::new(i);
+ let v = m.remove(&k);
+
+ assert!(v.is_some());
+
+ DROP_VECTOR.with(|v| {
+ assert_eq!(v.borrow()[i], 1);
+ assert_eq!(v.borrow()[i + 100], 1);
+ });
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..50 {
+ assert_eq!(v.borrow()[i], 0);
+ assert_eq!(v.borrow()[i + 100], 0);
+ }
+
+ for i in 50..100 {
+ assert_eq!(v.borrow()[i], 1);
+ assert_eq!(v.borrow()[i + 100], 1);
+ }
+ });
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+ }
+
+ #[test]
+ fn test_into_iter_drops() {
+ DROP_VECTOR.with(|v| {
+ *v.borrow_mut() = vec![0; 200];
+ });
+
+ let hm = {
+ let mut hm = HashMap::new();
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+
+ for i in 0..100 {
+ let d1 = Dropable::new(i);
+ let d2 = Dropable::new(i + 100);
+ hm.insert(d1, d2);
+ }
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 1);
+ }
+ });
+
+ hm
+ };
+
+ // By the way, ensure that cloning doesn't screw up the dropping.
+ drop(hm.clone());
+
+ {
+ let mut half = hm.into_iter().take(50);
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 1);
+ }
+ });
+
+ for _ in half.by_ref() {}
+
+ DROP_VECTOR.with(|v| {
+ let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count();
+
+ let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count();
+
+ assert_eq!(nk, 50);
+ assert_eq!(nv, 50);
+ });
+ };
+
+ DROP_VECTOR.with(|v| {
+ for i in 0..200 {
+ assert_eq!(v.borrow()[i], 0);
+ }
+ });
+ }
+
+ #[test]
+ fn test_empty_remove() {
+ let mut m: HashMap<isize, bool> = HashMap::new();
+ assert_eq!(m.remove(&0), None);
+ }
+
+ #[test]
+ fn test_empty_entry() {
+ let mut m: HashMap<isize, bool> = HashMap::new();
+ match m.entry(0) {
+ Occupied(_) => panic!(),
+ Vacant(_) => {},
+ }
+ assert!(*m.entry(0).or_insert(true));
+ assert_eq!(m.len(), 1);
+ }
+
+ #[test]
+ fn test_empty_iter() {
+ let mut m: HashMap<isize, bool> = HashMap::new();
+ assert_eq!(m.drain().next(), None);
+ assert_eq!(m.keys().next(), None);
+ assert_eq!(m.values().next(), None);
+ assert_eq!(m.values_mut().next(), None);
+ assert_eq!(m.iter().next(), None);
+ assert_eq!(m.iter_mut().next(), None);
+ assert_eq!(m.len(), 0);
+ assert!(m.is_empty());
+ assert_eq!(m.into_iter().next(), None);
+ }
+
+ #[test]
+ fn test_lots_of_insertions() {
+ let mut m = HashMap::new();
+
+ // Try this a few times to make sure we never screw up the hashmap's
+ // internal state.
+ for _ in 0..10 {
+ assert!(m.is_empty());
+
+ for i in 1..1001 {
+ assert!(m.insert(i, i).is_none());
+
+ for j in 1..i + 1 {
+ let r = m.get(&j);
+ assert_eq!(r, Some(&j));
+ }
+
+ for j in i + 1..1001 {
+ let r = m.get(&j);
+ assert_eq!(r, None);
+ }
+ }
+
+ for i in 1001..2001 {
+ assert!(!m.contains_key(&i));
+ }
+
+ // remove forwards
+ for i in 1..1001 {
+ assert!(m.remove(&i).is_some());
+
+ for j in 1..i + 1 {
+ assert!(!m.contains_key(&j));
+ }
+
+ for j in i + 1..1001 {
+ assert!(m.contains_key(&j));
+ }
+ }
+
+ for i in 1..1001 {
+ assert!(!m.contains_key(&i));
+ }
+
+ for i in 1..1001 {
+ assert!(m.insert(i, i).is_none());
+ }
+
+ // remove backwards
+ for i in (1..1001).rev() {
+ assert!(m.remove(&i).is_some());
+
+ for j in i..1001 {
+ assert!(!m.contains_key(&j));
+ }
+
+ for j in 1..i {
+ assert!(m.contains_key(&j));
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_find_mut() {
+ let mut m = HashMap::new();
+ assert!(m.insert(1, 12).is_none());
+ assert!(m.insert(2, 8).is_none());
+ assert!(m.insert(5, 14).is_none());
+ let new = 100;
+ match m.get_mut(&5) {
+ None => panic!(),
+ Some(x) => *x = new,
+ }
+ assert_eq!(m.get(&5), Some(&new));
+ }
+
+ #[test]
+ fn test_insert_overwrite() {
+ let mut m = HashMap::new();
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert!(!m.insert(1, 3).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 3);
+ }
+
+ #[test]
+ fn test_insert_conflicts() {
+ let mut m = HashMap::with_capacity(4);
+ assert!(m.insert(1, 2).is_none());
+ assert!(m.insert(5, 3).is_none());
+ assert!(m.insert(9, 4).is_none());
+ assert_eq!(*m.get(&9).unwrap(), 4);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ }
+
+ #[test]
+ fn test_conflict_remove() {
+ let mut m = HashMap::with_capacity(4);
+ assert!(m.insert(1, 2).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert!(m.insert(5, 3).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ assert!(m.insert(9, 4).is_none());
+ assert_eq!(*m.get(&1).unwrap(), 2);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ assert_eq!(*m.get(&9).unwrap(), 4);
+ assert!(m.remove(&1).is_some());
+ assert_eq!(*m.get(&9).unwrap(), 4);
+ assert_eq!(*m.get(&5).unwrap(), 3);
+ }
+
+ #[test]
+ fn test_is_empty() {
+ let mut m = HashMap::with_capacity(4);
+ assert!(m.insert(1, 2).is_none());
+ assert!(!m.is_empty());
+ assert!(m.remove(&1).is_some());
+ assert!(m.is_empty());
+ }
+
+ #[test]
+ fn test_pop() {
+ let mut m = HashMap::new();
+ m.insert(1, 2);
+ assert_eq!(m.remove(&1), Some(2));
+ assert_eq!(m.remove(&1), None);
+ }
+
+ #[test]
+ fn test_iterate() {
+ let mut m = HashMap::with_capacity(4);
+ for i in 0..32 {
+ assert!(m.insert(i, i * 2).is_none());
+ }
+ assert_eq!(m.len(), 32);
+
+ let mut observed: u32 = 0;
+
+ for (k, v) in &m {
+ assert_eq!(*v, *k * 2);
+ observed |= 1 << *k;
+ }
+ assert_eq!(observed, 0xFFFF_FFFF);
+ }
+
+ #[test]
+ fn test_keys() {
+ let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
+ let map: HashMap<_, _> = vec.into_iter().collect();
+ let keys: Vec<_> = map.keys().cloned().collect();
+ assert_eq!(keys.len(), 3);
+ assert!(keys.contains(&1));
+ assert!(keys.contains(&2));
+ assert!(keys.contains(&3));
+ }
+
+ #[test]
+ fn test_values() {
+ let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
+ let map: HashMap<_, _> = vec.into_iter().collect();
+ let values: Vec<_> = map.values().cloned().collect();
+ assert_eq!(values.len(), 3);
+ assert!(values.contains(&'a'));
+ assert!(values.contains(&'b'));
+ assert!(values.contains(&'c'));
+ }
+
+ #[test]
+ fn test_values_mut() {
+ let vec = vec![(1, 1), (2, 2), (3, 3)];
+ let mut map: HashMap<_, _> = vec.into_iter().collect();
+ for value in map.values_mut() {
+ *value = (*value) * 2
+ }
+ let values: Vec<_> = map.values().cloned().collect();
+ assert_eq!(values.len(), 3);
+ assert!(values.contains(&2));
+ assert!(values.contains(&4));
+ assert!(values.contains(&6));
+ }
+
+ #[test]
+ fn test_find() {
+ let mut m = HashMap::new();
+ assert!(m.get(&1).is_none());
+ m.insert(1, 2);
+ match m.get(&1) {
+ None => panic!(),
+ Some(v) => assert_eq!(*v, 2),
+ }
+ }
+
+ #[test]
+ fn test_eq() {
+ let mut m1 = HashMap::new();
+ m1.insert(1, 2);
+ m1.insert(2, 3);
+ m1.insert(3, 4);
+
+ let mut m2 = HashMap::new();
+ m2.insert(1, 2);
+ m2.insert(2, 3);
+
+ assert_ne!(m1, m2);
+
+ m2.insert(3, 4);
+
+ assert_eq!(m1, m2);
+ }
+
+ #[test]
+ fn test_show() {
+ let mut map = HashMap::new();
+ let empty: HashMap<i32, i32> = HashMap::new();
+
+ map.insert(1, 2);
+ map.insert(3, 4);
+
+ let map_str = format!("{:?}", map);
+
+ assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}");
+ assert_eq!(format!("{:?}", empty), "{}");
+ }
+
+ #[test]
+ fn test_expand() {
+ let mut m = HashMap::new();
+
+ assert_eq!(m.len(), 0);
+ assert!(m.is_empty());
+
+ let mut i = 0;
+ let old_raw_cap = m.raw_capacity();
+ while old_raw_cap == m.raw_capacity() {
+ m.insert(i, i);
+ i += 1;
+ }
+
+ assert_eq!(m.len(), i);
+ assert!(!m.is_empty());
+ }
+
+ #[test]
+ fn test_behavior_resize_policy() {
+ let mut m = HashMap::new();
+
+ assert_eq!(m.len(), 0);
+ assert_eq!(m.raw_capacity(), 0);
+ assert!(m.is_empty());
+
+ m.insert(0, 0);
+ m.remove(&0);
+ assert!(m.is_empty());
+ let initial_raw_cap = m.raw_capacity();
+ m.reserve(initial_raw_cap);
+ let raw_cap = m.raw_capacity();
+
+ assert_eq!(raw_cap, initial_raw_cap * 2);
+
+ let mut i = 0;
+ for _ in 0..raw_cap * 3 / 4 {
+ m.insert(i, i);
+ i += 1;
+ }
+ // three quarters full
+
+ assert_eq!(m.len(), i);
+ assert_eq!(m.raw_capacity(), raw_cap);
+
+ for _ in 0..raw_cap / 4 {
+ m.insert(i, i);
+ i += 1;
+ }
+ // half full
+
+ let new_raw_cap = m.raw_capacity();
+ assert_eq!(new_raw_cap, raw_cap * 2);
+
+ for _ in 0..raw_cap / 2 - 1 {
+ i -= 1;
+ m.remove(&i);
+ assert_eq!(m.raw_capacity(), new_raw_cap);
+ }
+ // A little more than one quarter full.
+ m.shrink_to_fit();
+ assert_eq!(m.raw_capacity(), raw_cap);
+ // again, a little more than half full
+ for _ in 0..raw_cap / 2 - 1 {
+ i -= 1;
+ m.remove(&i);
+ }
+ m.shrink_to_fit();
+
+ assert_eq!(m.len(), i);
+ assert!(!m.is_empty());
+ assert_eq!(m.raw_capacity(), initial_raw_cap);
+ }
+
+ #[test]
+ fn test_reserve_shrink_to_fit() {
+ let mut m = HashMap::new();
+ m.insert(0, 0);
+ m.remove(&0);
+ assert!(m.capacity() >= m.len());
+ for i in 0..128 {
+ m.insert(i, i);
+ }
+ m.reserve(256);
+
+ let usable_cap = m.capacity();
+ for i in 128..(128 + 256) {
+ m.insert(i, i);
+ assert_eq!(m.capacity(), usable_cap);
+ }
+
+ for i in 100..(128 + 256) {
+ assert_eq!(m.remove(&i), Some(i));
+ }
+ m.shrink_to_fit();
+
+ assert_eq!(m.len(), 100);
+ assert!(!m.is_empty());
+ assert!(m.capacity() >= m.len());
+
+ for i in 0..100 {
+ assert_eq!(m.remove(&i), Some(i));
+ }
+ m.shrink_to_fit();
+ m.insert(0, 0);
+
+ assert_eq!(m.len(), 1);
+ assert!(m.capacity() >= m.len());
+ assert_eq!(m.remove(&0), Some(0));
+ }
+
+ #[test]
+ fn test_from_iter() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ for &(k, v) in &xs {
+ assert_eq!(map.get(&k), Some(&v));
+ }
+ }
+
+ #[test]
+ fn test_size_hint() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.size_hint(), (3, Some(3)));
+ }
+
+ #[test]
+ fn test_iter_len() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.len(), 3);
+ }
+
+ #[test]
+ fn test_mut_size_hint() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let mut map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter_mut();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.size_hint(), (3, Some(3)));
+ }
+
+ #[test]
+ fn test_iter_mut_len() {
+ let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
+
+ let mut map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ let mut iter = map.iter_mut();
+
+ for _ in iter.by_ref().take(3) {}
+
+ assert_eq!(iter.len(), 3);
+ }
+
+ #[test]
+ fn test_index() {
+ let mut map = HashMap::new();
+
+ map.insert(1, 2);
+ map.insert(2, 1);
+ map.insert(3, 4);
+
+ assert_eq!(map[&2], 1);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_index_nonexistent() {
+ let mut map = HashMap::new();
+
+ map.insert(1, 2);
+ map.insert(2, 1);
+ map.insert(3, 4);
+
+ map[&4];
+ }
+
+ #[test]
+ fn test_entry() {
+ let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)];
+
+ let mut map: HashMap<_, _> = xs.iter().cloned().collect();
+
+ // Existing key (insert)
+ match map.entry(1) {
+ Vacant(_) => unreachable!(),
+ Occupied(mut view) => {
+ assert_eq!(view.get(), &10);
+ assert_eq!(view.insert(100), 10);
+ },
+ }
+ assert_eq!(map.get(&1).unwrap(), &100);
+ assert_eq!(map.len(), 6);
+
+ // Existing key (update)
+ match map.entry(2) {
+ Vacant(_) => unreachable!(),
+ Occupied(mut view) => {
+ let v = view.get_mut();
+ let new_v = (*v) * 10;
+ *v = new_v;
+ },
+ }
+ assert_eq!(map.get(&2).unwrap(), &200);
+ assert_eq!(map.len(), 6);
+
+ // Existing key (take)
+ match map.entry(3) {
+ Vacant(_) => unreachable!(),
+ Occupied(view) => {
+ assert_eq!(view.remove(), 30);
+ },
+ }
+ assert_eq!(map.get(&3), None);
+ assert_eq!(map.len(), 5);
+
+ // Inexistent key (insert)
+ match map.entry(10) {
+ Occupied(_) => unreachable!(),
+ Vacant(view) => {
+ assert_eq!(*view.insert(1000), 1000);
+ },
+ }
+ assert_eq!(map.get(&10).unwrap(), &1000);
+ assert_eq!(map.len(), 6);
+ }
+
+ #[test]
+ fn test_entry_take_doesnt_corrupt() {
+ #![allow(deprecated)] //rand
+ // Test for #19292
+ fn check(m: &HashMap<isize, ()>) {
+ for k in m.keys() {
+ assert!(m.contains_key(k), "{} is in keys() but not in the map?", k);
+ }
+ }
+
+ let mut m = HashMap::new();
+ let mut rng = thread_rng();
+
+ // Populate the map with some items.
+ for _ in 0..50 {
+ let x = rng.gen_range(-10, 10);
+ m.insert(x, ());
+ }
+
+ for i in 0..1000 {
+ let x = rng.gen_range(-10, 10);
+ match m.entry(x) {
+ Vacant(_) => {},
+ Occupied(e) => {
+ println!("{}: remove {}", i, x);
+ e.remove();
+ },
+ }
+
+ check(&m);
+ }
+ }
+
+ #[test]
+ fn test_extend_ref() {
+ let mut a = HashMap::new();
+ a.insert(1, "one");
+ let mut b = HashMap::new();
+ b.insert(2, "two");
+ b.insert(3, "three");
+
+ a.extend(&b);
+
+ assert_eq!(a.len(), 3);
+ assert_eq!(a[&1], "one");
+ assert_eq!(a[&2], "two");
+ assert_eq!(a[&3], "three");
+ }
+
+ #[test]
+ fn test_capacity_not_less_than_len() {
+ let mut a = HashMap::new();
+ let mut item = 0;
+
+ for _ in 0..116 {
+ a.insert(item, 0);
+ item += 1;
+ }
+
+ assert!(a.capacity() > a.len());
+
+ let free = a.capacity() - a.len();
+ for _ in 0..free {
+ a.insert(item, 0);
+ item += 1;
+ }
+
+ assert_eq!(a.len(), a.capacity());
+
+ // Insert at capacity should cause allocation.
+ a.insert(item, 0);
+ assert!(a.capacity() > a.len());
+ }
+
+ #[test]
+ fn test_occupied_entry_key() {
+ let mut a = HashMap::new();
+ let key = "hello there";
+ let value = "value goes here";
+ assert!(a.is_empty());
+ a.insert(key.clone(), value.clone());
+ assert_eq!(a.len(), 1);
+ assert_eq!(a[key], value);
+
+ match a.entry(key.clone()) {
+ Vacant(_) => panic!(),
+ Occupied(e) => assert_eq!(key, *e.key()),
+ }
+ assert_eq!(a.len(), 1);
+ assert_eq!(a[key], value);
+ }
+
+ #[test]
+ fn test_vacant_entry_key() {
+ let mut a = HashMap::new();
+ let key = "hello there";
+ let value = "value goes here";
+
+ assert!(a.is_empty());
+ match a.entry(key.clone()) {
+ Occupied(_) => panic!(),
+ Vacant(e) => {
+ assert_eq!(key, *e.key());
+ e.insert(value.clone());
+ },
+ }
+ assert_eq!(a.len(), 1);
+ assert_eq!(a[key], value);
+ }
+
+ #[test]
+ fn test_retain() {
+ let mut map: HashMap<isize, isize> = (0..100).map(|x| (x, x * 10)).collect();
+
+ map.retain(|&k, _| k % 2 == 0);
+ assert_eq!(map.len(), 50);
+ assert_eq!(map[&2], 20);
+ assert_eq!(map[&4], 40);
+ assert_eq!(map[&6], 60);
+ }
+
+ #[test]
+ fn test_adaptive() {
+ const TEST_LEN: usize = 5000;
+ // by cloning we get maps with the same hasher seed
+ let mut first = HashMap::new();
+ let mut second = first.clone();
+ first.extend((0..TEST_LEN).map(|i| (i, i)));
+ second.extend((TEST_LEN..TEST_LEN * 2).map(|i| (i, i)));
+
+ for (&k, &v) in &second {
+ let prev_cap = first.capacity();
+ let expect_grow = first.len() == prev_cap;
+ first.insert(k, v);
+ if !expect_grow && first.capacity() != prev_cap {
+ return;
+ }
+ }
+ panic!("Adaptive early resize failed");
+ }
+}