summaryrefslogtreecommitdiffstats
path: root/third_party/python/chardet/chardet/sbcharsetprober.py
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/python/chardet/chardet/sbcharsetprober.py145
1 files changed, 145 insertions, 0 deletions
diff --git a/third_party/python/chardet/chardet/sbcharsetprober.py b/third_party/python/chardet/chardet/sbcharsetprober.py
new file mode 100644
index 0000000000..46ba835c66
--- /dev/null
+++ b/third_party/python/chardet/chardet/sbcharsetprober.py
@@ -0,0 +1,145 @@
+######################## BEGIN LICENSE BLOCK ########################
+# The Original Code is Mozilla Universal charset detector code.
+#
+# The Initial Developer of the Original Code is
+# Netscape Communications Corporation.
+# Portions created by the Initial Developer are Copyright (C) 2001
+# the Initial Developer. All Rights Reserved.
+#
+# Contributor(s):
+# Mark Pilgrim - port to Python
+# Shy Shalom - original C code
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+# 02110-1301 USA
+######################### END LICENSE BLOCK #########################
+
+from collections import namedtuple
+
+from .charsetprober import CharSetProber
+from .enums import CharacterCategory, ProbingState, SequenceLikelihood
+
+
+SingleByteCharSetModel = namedtuple('SingleByteCharSetModel',
+ ['charset_name',
+ 'language',
+ 'char_to_order_map',
+ 'language_model',
+ 'typical_positive_ratio',
+ 'keep_ascii_letters',
+ 'alphabet'])
+
+
+class SingleByteCharSetProber(CharSetProber):
+ SAMPLE_SIZE = 64
+ SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
+ POSITIVE_SHORTCUT_THRESHOLD = 0.95
+ NEGATIVE_SHORTCUT_THRESHOLD = 0.05
+
+ def __init__(self, model, reversed=False, name_prober=None):
+ super(SingleByteCharSetProber, self).__init__()
+ self._model = model
+ # TRUE if we need to reverse every pair in the model lookup
+ self._reversed = reversed
+ # Optional auxiliary prober for name decision
+ self._name_prober = name_prober
+ self._last_order = None
+ self._seq_counters = None
+ self._total_seqs = None
+ self._total_char = None
+ self._freq_char = None
+ self.reset()
+
+ def reset(self):
+ super(SingleByteCharSetProber, self).reset()
+ # char order of last character
+ self._last_order = 255
+ self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
+ self._total_seqs = 0
+ self._total_char = 0
+ # characters that fall in our sampling range
+ self._freq_char = 0
+
+ @property
+ def charset_name(self):
+ if self._name_prober:
+ return self._name_prober.charset_name
+ else:
+ return self._model.charset_name
+
+ @property
+ def language(self):
+ if self._name_prober:
+ return self._name_prober.language
+ else:
+ return self._model.language
+
+ def feed(self, byte_str):
+ # TODO: Make filter_international_words keep things in self.alphabet
+ if not self._model.keep_ascii_letters:
+ byte_str = self.filter_international_words(byte_str)
+ if not byte_str:
+ return self.state
+ char_to_order_map = self._model.char_to_order_map
+ language_model = self._model.language_model
+ for char in byte_str:
+ order = char_to_order_map.get(char, CharacterCategory.UNDEFINED)
+ # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
+ # CharacterCategory.SYMBOL is actually 253, so we use CONTROL
+ # to make it closer to the original intent. The only difference
+ # is whether or not we count digits and control characters for
+ # _total_char purposes.
+ if order < CharacterCategory.CONTROL:
+ self._total_char += 1
+ # TODO: Follow uchardet's lead and discount confidence for frequent
+ # control characters.
+ # See https://github.com/BYVoid/uchardet/commit/55b4f23971db61
+ if order < self.SAMPLE_SIZE:
+ self._freq_char += 1
+ if self._last_order < self.SAMPLE_SIZE:
+ self._total_seqs += 1
+ if not self._reversed:
+ lm_cat = language_model[self._last_order][order]
+ else:
+ lm_cat = language_model[order][self._last_order]
+ self._seq_counters[lm_cat] += 1
+ self._last_order = order
+
+ charset_name = self._model.charset_name
+ if self.state == ProbingState.DETECTING:
+ if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
+ confidence = self.get_confidence()
+ if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
+ self.logger.debug('%s confidence = %s, we have a winner',
+ charset_name, confidence)
+ self._state = ProbingState.FOUND_IT
+ elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
+ self.logger.debug('%s confidence = %s, below negative '
+ 'shortcut threshhold %s', charset_name,
+ confidence,
+ self.NEGATIVE_SHORTCUT_THRESHOLD)
+ self._state = ProbingState.NOT_ME
+
+ return self.state
+
+ def get_confidence(self):
+ r = 0.01
+ if self._total_seqs > 0:
+ r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
+ self._total_seqs / self._model.typical_positive_ratio)
+ r = r * self._freq_char / self._total_char
+ if r >= 1.0:
+ r = 0.99
+ return r