use crate::solve::FulfillmentCtxt; use crate::traits::query::evaluate_obligation::InferCtxtExt as _; use crate::traits::{self, DefiningAnchor, ObligationCtxt}; use rustc_hir::def_id::DefId; use rustc_hir::lang_items::LangItem; use rustc_infer::traits::{TraitEngine, TraitEngineExt}; use rustc_middle::arena::ArenaAllocatable; use rustc_middle::infer::canonical::{Canonical, CanonicalQueryResponse, QueryResponse}; use rustc_middle::traits::query::NoSolution; use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeVisitableExt}; use rustc_middle::ty::{GenericArg, ToPredicate}; use rustc_span::DUMMY_SP; use std::fmt::Debug; pub use rustc_infer::infer::*; pub trait InferCtxtExt<'tcx> { fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool; fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool; /// Check whether a `ty` implements given trait(trait_def_id). /// The inputs are: /// /// - the def-id of the trait /// - the type parameters of the trait, including the self-type /// - the parameter environment /// /// Invokes `evaluate_obligation`, so in the event that evaluating /// `Ty: Trait` causes overflow, EvaluatedToErrStackDependent (or EvaluatedToAmbigStackDependent) /// will be returned. fn type_implements_trait( &self, trait_def_id: DefId, params: impl IntoIterator>>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult; fn could_impl_trait( &self, trait_def_id: DefId, ty: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Option>>; } impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> { fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let ty = self.resolve_vars_if_possible(ty); if !(param_env, ty).has_infer() { return ty.is_copy_modulo_regions(self.tcx, param_env); } let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None); // This can get called from typeck (by euv), and `moves_by_default` // rightly refuses to work with inference variables, but // moves_by_default has a cache, which we want to use in other // cases. traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id) } fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { let lang_item = self.tcx.require_lang_item(LangItem::Sized, None); traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item) } #[instrument(level = "debug", skip(self, params), ret)] fn type_implements_trait( &self, trait_def_id: DefId, params: impl IntoIterator>>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult { let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, params); let obligation = traits::Obligation { cause: traits::ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: ty::Binder::dummy(trait_ref).to_predicate(self.tcx), }; self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr) } fn could_impl_trait( &self, trait_def_id: DefId, ty: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Option>> { self.probe(|_snapshot| { if let ty::Adt(def, args) = ty.kind() && let Some((impl_def_id, _)) = self .tcx .all_impls(trait_def_id) .filter_map(|impl_def_id| { self.tcx.impl_trait_ref(impl_def_id).map(|r| (impl_def_id, r)) }) .map(|(impl_def_id, imp)| (impl_def_id, imp.skip_binder())) .find(|(_, imp)| match imp.self_ty().peel_refs().kind() { ty::Adt(i_def, _) if i_def.did() == def.did() => true, _ => false, }) { let mut fulfill_cx = FulfillmentCtxt::new(self); // We get all obligations from the impl to talk about specific // trait bounds. let obligations = self .tcx .predicates_of(impl_def_id) .instantiate(self.tcx, args) .into_iter() .map(|(clause, span)| { traits::Obligation::new( self.tcx, traits::ObligationCause::dummy_with_span(span), param_env, clause, ) }) .collect::>(); fulfill_cx.register_predicate_obligations(self, obligations); let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, [ty]); let obligation = traits::Obligation::new( self.tcx, traits::ObligationCause::dummy(), param_env, trait_ref, ); fulfill_cx.register_predicate_obligation(self, obligation); let mut errors = fulfill_cx.select_all_or_error(self); // We remove the last predicate failure, which corresponds to // the top-level obligation, because most of the type we only // care about the other ones, *except* when it is the only one. // This seems to only be relevant for arbitrary self-types. // Look at `tests/ui/moves/move-fn-self-receiver.rs`. if errors.len() > 1 { errors.truncate(errors.len() - 1); } Some(errors) } else { None } }) } } pub trait InferCtxtBuilderExt<'tcx> { fn enter_canonical_trait_query( self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result, ) -> Result, NoSolution> where K: TypeFoldable>, R: Debug + TypeFoldable>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>; } impl<'tcx> InferCtxtBuilderExt<'tcx> for InferCtxtBuilder<'tcx> { /// The "main method" for a canonicalized trait query. Given the /// canonical key `canonical_key`, this method will create a new /// inference context, instantiate the key, and run your operation /// `op`. The operation should yield up a result (of type `R`) as /// well as a set of trait obligations that must be fully /// satisfied. These obligations will be processed and the /// canonical result created. /// /// Returns `NoSolution` in the event of any error. /// /// (It might be mildly nicer to implement this on `TyCtxt`, and /// not `InferCtxtBuilder`, but that is a bit tricky right now. /// In part because we would need a `for<'tcx>` sort of /// bound for the closure and in part because it is convenient to /// have `'tcx` be free on this function so that we can talk about /// `K: TypeFoldable>`.) fn enter_canonical_trait_query( self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result, ) -> Result, NoSolution> where K: TypeFoldable>, R: Debug + TypeFoldable>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, { let (infcx, key, canonical_inference_vars) = self .with_opaque_type_inference(DefiningAnchor::Bubble) .build_with_canonical(DUMMY_SP, canonical_key); let ocx = ObligationCtxt::new(&infcx); let value = operation(&ocx, key)?; ocx.make_canonicalized_query_response(canonical_inference_vars, value) } }